国产av一二三区|日本不卡动作网站|黄色天天久久影片|99草成人免费在线视频|AV三级片成人电影在线|成年人aV不卡免费播放|日韩无码成人一级片视频|人人看人人玩开心色AV|人妻系列在线观看|亚洲av无码一区二区三区在线播放

網易首頁 > 網易號 > 正文 申請入駐

伊斯蘭幾何圖案的感知和設計詞匯

0
分享至

女士們,先生們,老少爺們兒們!在下張大少。

本文介紹了伊斯蘭藝術和建筑遺產中幾何裝飾的形式和意義的三種不同學術解釋:外部文化立場,深奧的宗教論點,和內部科學方法。文章的主要部分超越了伊斯蘭信仰的文化忠誠或規(guī)定,而是圍繞著重建和制作幾何圖案的內部形式主義和純美學方面,旨在探索它們的感知詞匯,以及它們的生成原則和內在過程。分析從最基本的層面開始,幾何圖案可以被視為開放或封閉表面多邊形或線性配置的組合。其他感知方式涉及多邊形的外觀和內在幾何形狀、色調或顏色,以及通過圖形-背景反轉或通過將線性設計感知為二維平面之外的互鎖元素來應用準三維空間。然后,本文從構成多邊形、重復密鋪和設計整體的層面,探討了視覺感知手段與圖案固有的重復、幾何和對稱性之間的關系。除了雙邊對稱中相似性和同一性的狹義含義之外,還引入了對稱的替代概念,然后基于晶體學家發(fā)現(xiàn)并由數學家發(fā)展的分類,將其應用于建立2d幾何圖案的綜合詞匯表。文章最后展示了結合幾何和對稱系統(tǒng)在重新創(chuàng)造傳統(tǒng)設計或產生新圖案的力量。

1導言

近年來,在研究伊斯蘭裝飾圖案的內在設計、意義以及歷史和文化背景方面取得了越來越多的成果。在文化領域,它們經常被框定為社會產品或歷史風格[1]。在神學和神秘學領域被用作解釋工具。在象征領域被賦予了一個深奧的維度,形式和結構的秩序成為“統(tǒng)一”原則的體現(xiàn)[2],[3]。最后,理性/實證主義的方法忽略了伊斯蘭裝飾研究中的意義問題,無論是與社會相關還是更具體地受信仰的約束,而是專注于設計的形式方面及其幾何和數學過程[4]。

本文的討論范圍超越了伊斯蘭信仰的文化忠誠或規(guī)定;而是圍繞著幾何圖案制作藝術的內部形式主義和純美學方面,目的是探索它們的感知詞匯和它們內在的幾何原理。

2感知詞匯

單個2d重復圖案的設計可以使用基本圖形詞匯(如線條和色調)以不同的方式傳達和感知,以便表達設計中固有的幾何形狀和對稱系統(tǒng)。在同一個設計中,線條和色調詞匯的不同應用會產生大量的解讀,從而產生各種各樣的圖案。

在非常基本的層面上,幾何圖案可以被理解為開放或封閉的表面多邊形或線性結構的組合。將色調或顏色引入表面多邊形甚至線性元素是另一種感知方式。另一個例子是通過填充多邊形的圖案-背景反轉,或者通過將線性設計視為平面二維之外的互鎖元素,來增加準三維。本節(jié)將探討這些和其他例子,研究視覺感知手段和圖案的內在幾何形狀和對稱性之間的關系。這將為下一節(jié)討論對稱和重復系統(tǒng)打下基礎。

2.1表面多邊形

這種解讀承認了二維重復圖案作為表面填充設計的基本性質。該表面被視為封閉多邊形的邊對邊鋪砌(圖1(a))。在某些情況下,開放的多邊形區(qū)域在無限的帶狀構型中起到填充空間的類似作用(圖1(b))。

圖1:表面填充多邊形。(a)閉合多邊形;(b)開放的多邊形條帶。

區(qū)分多邊形類型的另一種方式涉及多邊形邊緣是彎曲的還是直線的(圖2(a)和2(b))。本研究范圍內的模式大多是直線型的,并且基于閉合多邊形。第三個區(qū)別涉及多邊形的內部軸對稱或旋轉對稱(圖2(c)和2(d))。另一個同樣重要的區(qū)別是多邊形所基于的幾何比例系統(tǒng)。注意直線和曲線情況下的共同幾何系統(tǒng)(圖2(e)和2(f))。

圖2:多邊形幾何。(a)和(b)曲線多邊形與直線多邊形;(c)內部軸對稱;(d)旋轉對稱;(e)和(f)幾何比例。

每個圖案最終都是由在2d空間中重復的有限數量的基本多邊形類型組成的。這一重要特性在圖3(a)中用與圖1(a)相同的圖形表示。不同類型的多邊形以不同的數量重復,設計中組成多邊形類型的比例作為一個整體變得相關。由于圖案由重復的模塊組成,因此重復單元中每種多邊形類型的出現(xiàn)次數也變得很重要(圖3(b))。

圖3:多邊形類型和重復。(a)基本多邊形;(b)重復單位的多邊形。

2.2實體虛空反轉

當我們能夠將圖案視為充滿空間的表面多邊形時,也就有可能對留下空洞的虛空多邊形進行反向解讀。當填充多邊形和虛空多邊形有序地結合在一個單一圖案的實體虛空中時,這種現(xiàn)象就變得非常有趣。

任何封閉多邊形圖案,如果其填充多邊形的讀法符合交錯規(guī)則(見下文 2.4 的解釋),都可以被視為交替的同心多邊形集,遵循圖案背景反轉的開關邏輯(圖 4(a))。此外,這里還可以構想出實體虛空、黑與白或明與暗的替代主題。同樣的道理也適用于一些基于開放多邊形的帶狀設計,如圖 4(b)。在這個例子中,將深色區(qū)域和淺色區(qū)域顛倒一下,就能得到同一設計的轉換副本。

圖4:實體虛空。(a)閉合多邊形;(b)開放的多邊形條帶。

2.3基本線性多邊形

這種對幾何裝飾的解讀將設計簡化為二維空間中的直線布局。與填充多邊形相關,線條表示設計的相鄰多邊形表面的共享邊。但是在線性解讀中,我們開始獨立于線條定義的多邊形來感知線條,F(xiàn)在,眼睛可以從某個點開始,沿著一個線性元素穿過不同的多邊形,直到它或者如圖5(a)所示看起來是無限的,或者如圖5(b)所示繞回到它的原點。

圖5:線性解讀。(a)基本線性配置;(b)單一線性多邊形;(c)兩個反射的線性多邊形;(d)兩個相對的線性多邊形。

當整個圖案開始被視為這種線性元素的互鎖網絡時,解讀變得更加有趣,這些線性元素本質上要么是無盡的連續(xù)線,要么是閉合的線性多邊形。在許多情況下,單個線性元素的重復,保持相同的取向,如圖5(b)所示,或者具有不同的取向,如圖5(a)和5(c)所示,足以產生設計。在其他情況下,兩個或更多不同的元素起到與圖5(d)中相似的作用。在符合下面解釋的交錯規(guī)則的設計中,將圖案視為互鎖的線性元素是特別可能的。

2.4 交錯設計

交錯設計本質上是基于幾何圖案的線性感知,但也體現(xiàn)了表面和質空讀數的特性(圖 6(a1)、(b1) 和(c1))。當線性圖案中的線性元素開始具有一定的寬度(即線性表面)時,對交錯線條的感知會轉變?yōu)閷诲e表面元素的感知,這些表面元素的重疊會產生新的設計現(xiàn)實(圖 6(a2)、(b2) 和 (c2))。如圖 6(a2)所示,這些元素以無限折線陣列的形式重復出現(xiàn),或如圖 6(b2)所示,以有限的封閉線性多邊形重復出現(xiàn)。這些元素所形成的寬度使它們具有了自己的表面,直到出現(xiàn)難以區(qū)分表面和線性設計的時候,如圖 6(c2)。

交錯以一種開關順序的方式工作:如果一個線性元素越過第二個元素,下一次它遇到第三個元素時,它應該穿過它(圖6(a2), (b2)和(c2))。天橋-地道邏輯可以通過交替顏色系統(tǒng)來強調(圖6(c2))。當在任何一點上不超過2條線相交或交叉時,只能從線性圖案發(fā)展成交錯設計。當所有多邊形頂點僅由2或4個多邊形共享時,才能從圖案的填充多邊形讀取中開發(fā)出交錯設計;參考圖6(a1)、(b1)、(c1)中的頂點V2、V4。

交錯設計可以經歷前景-背景反轉或被解讀為實體和虛空、黑白或明暗(圖6(a3)、(b3)和(c3))。被分解成有限閉合多邊形組件的交錯元素可以被應用或壓印在背景表面材料上。

圖 6:交錯。(a) 無限交錯元素;(b) 封閉交錯多邊形;(c) 假定最大表面的交錯元素。

2.5 花邊圖案

如果一個線性元素圖案不符合交錯規(guī)則,它仍然可以被轉化為所謂的花邊設計,如圖 7(a)和(b)所示。這里的區(qū)別在于,線性元素有寬度,但它們只是相互交匯,并沒有交錯。它們不能以上下連續(xù)的方式交錯,因為只要至少有一點有兩條以上的線相交或交叉,就足以破壞整個系統(tǒng),如圖7中V3和V6點所示。

花邊設計可以很容易地從圖案與背景的關系、實體與虛空的關系、黑與白的關系或明與暗的關系中感知。實體與虛空的關系可直接應用于建筑和室內設計元素,如隔墻、用于保護隱私或過濾自然光的窗紗。

圖 7:花邊設計

2.6基本重復單元

這是一種對幾何圖案的解讀,它不太關注單個的多邊形元素,而更傾向于構思更大的設計模塊,通過在二維空間中無休止的重復來產生整體。這包括從單個多邊形的局部對稱性到更大模塊的對稱性的轉變,以及最終到設計整體的全局對稱性的轉變。接下來會對設計的部分-整體結構有一個更清晰的認識。該設計被視為不同基本單元的鑲嵌,每一個基本單元都可以被物理地想象為一個重復的拼塊。

在處理重復時,可以選擇性地考慮圖案的不同屬性:多邊形幾何、表面色調或顏色、隔行或填充細節(jié)。除此之外,根據大小、邊界形狀和重復類型的選擇,總是有不止一種方法可以構思相同模式中的重復貼圖。圖8(b)中的模塊C1、C2、C3和C4中,拼塊可以選擇性地縮小到再生圖案所需的最小尺寸。越來越大的拼塊總是可能的。拼塊既可以有一個穿過多邊形的規(guī)則邊界,以保持其自身的規(guī)則幾何形狀,如圖8(b)所示,也可以有一個遵循多邊形邊緣的不那么規(guī)則的邊界,如圖8(c)所示。最后,拼塊可以根據不同的重復系統(tǒng)的先入為的概念來描繪,無論是基于簡單的平移還是其他模式的反射和旋轉對稱,這將在下一節(jié)中解釋。

圖8:模塊化重復。(a)2d重復圖案;(b)替代的重復模塊;多邊形拼塊。

重要的是要注意,構思模塊的替代方式將直接影響設計新圖案的方法,并將最終指導旨在覆蓋真實表面的物理拼塊的制造過程。在后一種情況下,最好的拼塊可能是那些邊界不穿過單個多邊形的邊,但仍保持最規(guī)則形狀的拼塊。

3對稱的詞匯

在討論感知幾何圖案的替代方法時,我們發(fā)現(xiàn)對稱性和幾何學在構成多邊形、重復拼塊以及整體設計的感知區(qū)分中起著重要作用,F(xiàn)在是時候更深入地探索以有序的方式實現(xiàn)空間填充的替代方法,即通過組合不同的對稱模式來構思有序的重復系統(tǒng)。

3.1對稱操作

如果一個系統(tǒng)在一次或多次重復操作后保持不變,則該系統(tǒng)具有對稱性。顯然,2d幾何圖案的任何基本單元的重復,無論是線性的、多邊形的還是拼塊狀的,都是基于平移、反射或旋轉。這種過程似乎扮演了對稱操作的角色,因為當平移、反射或旋轉(取決于它首先擁有的對稱類型)時,設計作為一個整體不會改變。

圖9中簡單的2d幾何圖案說明了這個概念。該圖案是無限的,并且基于三角形網格。假設我們在設計的透明副本上突出顯示選定的L形區(qū)域P。在基礎圖案上疊加副本后,我們可以用不同的方式將它移動到不同的位置(P1、P2和P3),同時保持兩個無限圖案完美疊加。滿足此條件的可用移動實際上是特定的線性平移、沿選定的軸翻轉整個圖案或圍繞選定的點旋轉。

圖9:平移、反射和旋轉。

在該特定設計中,平移可以是距離d1或d2的倍數(圖10)。在這兩種情況下,沿著三個不同的軸和沿著每個軸的相反方向的平移都是可能的。如果我們沿著d1或d2以及任何指定的方向移動或復制整個設計或其一部分,它將保持不變。圖11中的反射以不同的方式工作。我們可以沿其翻轉圖案的軸實際上是兩側對稱軸,即鏡像線。請注意,半正六邊形在圍繞選定的垂直軸“m”反射時是如何鏡像的。沿著連接半正六邊形中心的另一個傾斜軸“g ”,也存在一種更復雜的反射。請注意“g”左側的選定三角形是如何被鏡像并轉化為右側的反射圖像的。這種平移和鏡面反射的多重過程稱為滑移反射。

圖10:平移

圖11:反射

因此,反射軸線要么是粗體連續(xù)的鏡面線,要么是粗體虛線。仔細觀察就會發(fā)現(xiàn),在這種圖案中,有兩種鏡像線(m1 和 m2)和兩種滑移線(g1 和 g2)構成了反射軸網格。

而旋轉則是圍繞特定的點進行重復,這些點就是旋轉中心(簡稱旋轉中心)。當一個圖案圍繞一個旋轉中心旋轉時,整個圖案保持不變,并因此具有旋轉對稱性。為了說明旋轉對稱性,圖 12 和圖 13 采用了兩種新設計。在圖 12 中,三種不同的旋轉類型并存:2重、3重和 6重。在圖 13 中,可以進行2重和4重旋轉。在任何二維平面圖形中,一般都不可能出現(xiàn)其他n重旋轉。原因在于,只有 2、3、4 或 6重旋轉與無間隙覆蓋平面的重復系統(tǒng)相兼容。這些系統(tǒng)使用的網格主要以矩形、等邊三角形、正方形和六邊形為基礎。

圖12:2、3和6重旋轉

圖13:2重和4重旋轉

雙重旋轉對稱不要與雙向鏡面反射混淆。它包括圍繞2重旋轉中心的180度旋轉,或180度旋轉的倍數。請注意,在圖12和圖13中,突出顯示的填充區(qū)域和選定的線性多邊形如何在圍繞指定的2重中心旋轉時重復兩次。屬于這種區(qū)域或多邊形的每個點在重復時都經歷相同的180度旋轉。

類似的過程適用于圖12和圖13中的3、4和6重旋轉的情況。在三重旋轉中,設計或其任何線性或平面部分可以圍繞相應的中心旋轉120、240或360度而不被改變。注意,在圖13中,有兩種類型的四重中心4和4’。第一個位于四角星的中心,第二個位于四角萬字的中心。圍繞兩個中心可以旋轉90度、180度、270度和360度。類似地,圍繞圖12中的6重中心旋轉60、120、180、240、300和360度也是可能的。

正如我們在上面看到的,旋轉中心是在一個給定的二維圖形中發(fā)生旋轉對稱的特定點。這實際上適用于2、3、4和6重旋轉對稱。然而,如果我們將旋轉360度整圈的一般情況視為1次旋轉對稱,那么這種旋轉可以發(fā)生在給定圖案中的任何點,而不是設計中的特定點。因此,一次旋轉在理論上是可能的,并且在表征一組特定的2d圖案時實際上是不可或缺的,正如我們將在下面看到的。在圖示中,一個小的實心圓,以及旁邊的數字2、3、4或6,將標識這些中心(圖14)。

圖14:旋轉中心類型

3.2對稱群

當應用于某個2d設計時,對稱操作的不同組合,即平移、反射和旋轉,可以產生無限多種重復的2d幾何圖案。根據這些對稱運算的類型和組合方法,不同模式的組似乎具有共同的特征。這導致將重復圖案分類成有限數量的對稱組的能力?赡艿膶ΨQ群的數量是17,這與定義平面對稱的17種可能性的晶體學和對稱群理論一致,該理論首先由俄羅斯科學家費多羅夫分類[4]。平移、反射和旋轉對稱是這些組的核心。沿著平面的不同方向的平移對稱是所有重復圖案所共有的,并且是它們的重復模塊的本質,但是盡管可以根據它們的平移模塊的特征來對圖案進行分類,但是另一方面,旋轉對稱在根據有效覆蓋平面的旋轉過程將這些圖案分為5大類時顯得更通用。這些是1、2、3、4和6重系列(圖15)。當考慮鏡面反射和滑移反射時,這些族出現(xiàn)在不同的子群或對稱群中,總共有17種。

在圖15中,每個對稱群由兩種類型的標簽來標識。第一個簡單地標識了旋轉族及其在族中的順序(例如2a或4c)。第二種類型更為復雜,總結了旋轉中心類型、反射鏡和滑移(如果有的話),以及旋轉中心與反射鏡或滑移之間的相對位置。一個例子是4|mg4 ' |2,其中4和4 '是兩個4重旋轉中心,“2”是唯一的2重旋轉中心;畫線是因為它在鏡像線上。4′和4′后的垂直線符號表示這些中心屬于滑移線。字母m和g在4和4 '之間表示4和4 '互為鏡像和滑移鏡像。

因此,就重復的對稱系統(tǒng)而言,只有17種感知2d幾何圖案的方式。由于它們的豐富性和無限的多樣性,伊斯蘭幾何圖案似乎是17種對稱類型中的大多數,如果不是全部的話。

圖15:17種不相容對稱群

3.3 圖案制作中的應用

利用幾何工具和對稱結構可以分析伊斯蘭文化中的歷史裝飾圖案,并為新圖案的制作制定設計規(guī)則和策略。在這篇短文的最后,我將根據對稱群理論和重復模塊詞匯簡要說明一些幾何圖案的生成過程。首先,讓我們區(qū)分一下三種類型的重復模塊:重復單元、單元格和線性單元格。

重復單元是圖案中最小的平行四邊形(包括矩形和正方形)或六邊形部分,當它在平面的兩個方向上有規(guī)律地平移時,可以再現(xiàn)整個二維圖案(圖 16(a) 和 (b))。單元格是重復圖案中最小的表面部分,它可以在一個或多個平移、反射或旋轉的對稱操作下生成整個圖案。這就是上述六邊形和正方形中突出顯示的三角形區(qū)域。線性單元格是線性重復圖案的最小部分,可以在平移、反射或旋轉的情況下生成整個設計。這些是單元格內的線段。

可以選擇不同的幾何系統(tǒng)來構建六邊形或正方形重復單元,如圖16(a)和(b)中左欄所示[5]。然后,通過在晶格內的幾何結構的選定線上描摹來創(chuàng)建線性晶格設計。然后,根據平移、反射和旋轉的特定規(guī)則,在重復單元內重復產生的設計;圖16(a)中的6重旋轉和圖16(b)中的4重旋轉。最后,為了產生圖16(a)和(b)的右欄中的完整圖案,使用平移再次細化重復單元設計,為了方便起見,這里以一半比例示出了這些圖案。

重復單元內的替代幾何系統(tǒng)的構建,以及模塊化重復過程的自動化可以容易地由計算機軟件支持,如圖16中的情況。計算機甚至可以探索選擇線性晶格設計的無限可能性[6],[7]。但是,這個過程中需要智能人工干預的部分,是從無限的可能性中,選擇出那些產生最有創(chuàng)意但最實用的設計的可能性。試錯或某種有根據的猜測可能會出乎意料地帶來好結果。

最后,盡管古代和中世紀的工匠或數學家很可能完全不知道對稱群的概念,即使傳統(tǒng)工匠不可能在裝飾學科中吸收晶體學理論,晶體學分析的方法仍然是一種對歷史實例進行感知和分類的方便手段,也是制作新設計藝術的一種非常有前途的方法。未來的重點應該是制定規(guī)則和準則,作為設計工具,指導學生、工匠甚至參與新設計生產的行業(yè)。

圖16:幾何結構系統(tǒng)和模塊化重復。(a) 6重圖案;(b) 4重圖案。

參考文獻

[1] Grabar, O., The Formation of Islamic Art, Yale University Press: New Haven and London, 1987.

[2] Ardalan, N. & Bakhtiar, L., The Sense of Unity: The Sufi Tradition in Persian Architecture, The University of Chicago Press: Chicago and London, 1975.

[3] Critchlow, K., Islamic Patterns: An Analytical and Cosmological Approach, Schocken Books: London, 1976.

[4] Grunbaum, B., Grunbaum, Z. & Shephard, G.C., Symmetry in Moorish and other ornaments. Computer and Mathematics with Applications, 12B(3/4), p. 641, 1986.

[5] El-Said, I. & Parman, A., Geometric Concepts in Islamic Art, World of Islam Festival Publishing Company Ltd: London, 1976.

[6] Dwedny, A.K., Computer recreations: imagination meets geometry in the crystalline realm of latticeworks. Scientific American, 258(6), pp. 120–123, 1988.

[7] Lalvani, H., Pattern regeneration: a focus on Islamic jalis and mosaics. The Impulse to Adorn: Studies in Traditional Architecture, ed. S. Doshi, Marg Publications: Mumbai, p. 133, 1982.

[8] MOHAMAD NASRI, THE VOCABULARY OF PERCEPTION AND DESIGN OF ISLAMIC GEOMETRIC PATTERNS

青山不改,綠水長流,在下告退。

轉發(fā)隨意,轉載請聯(lián)系張大少本尊,聯(lián)系方式請見公眾號底部菜單欄。

掃一掃,關注微信公眾號“宇宙文明帶路黨”

特別聲明:以上內容(如有圖片或視頻亦包括在內)為自媒體平臺“網易號”用戶上傳并發(fā)布,本平臺僅提供信息存儲服務。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

相關推薦
熱點推薦
特朗普關稅換格陵蘭島?歐盟打響“護島”保衛(wèi)戰(zhàn)

特朗普關稅換格陵蘭島?歐盟打響“護島”保衛(wèi)戰(zhàn)

第一財經資訊
2026-01-18 21:18:10
一夫一妻制逐漸難維持!社會學家分析:未來3種模式將成為主流?

一夫一妻制逐漸難維持!社會學家分析:未來3種模式將成為主流?

流云青史
2025-11-24 19:15:05
吳磊大瓜牽扯多位明星!爆料女主罵趙露思騷擾吳磊,曝何猷君出軌

吳磊大瓜牽扯多位明星!爆料女主罵趙露思騷擾吳磊,曝何猷君出軌

萌神木木
2026-01-18 23:25:20
部分地區(qū)雨雪交加!云南新一輪大降溫即將來襲

部分地區(qū)雨雪交加!云南新一輪大降溫即將來襲

云南網絡廣播電視臺
2026-01-18 21:45:49
2026年大喜降臨,這3生肖事業(yè)一順百順,財運飆漲賺大錢?

2026年大喜降臨,這3生肖事業(yè)一順百順,財運飆漲賺大錢?

人閒情事
2026-01-18 11:17:01
蔣萬安四歲時與母親黃美倫的合影,母親年輕時漂亮又有氣質

蔣萬安四歲時與母親黃美倫的合影,母親年輕時漂亮又有氣質

大江
2026-01-09 16:27:54
閏土背刺太陽女主持?曾舜晞小透明?尹正沒演技?王瑞昌打醬油?姨太問答

閏土背刺太陽女主持?曾舜晞小透明?尹正沒演技?王瑞昌打醬油?姨太問答

毒舌扒姨太
2026-01-18 22:14:22
我周圍有好幾個離異女人,我就發(fā)現(xiàn)了一個挺怪的現(xiàn)象

我周圍有好幾個離異女人,我就發(fā)現(xiàn)了一個挺怪的現(xiàn)象

大熊歡樂坊
2026-01-19 03:16:02
陳坤董潔牽手出席活動,董潔沒變依然清麗脫俗,陳坤卻發(fā)福變樣了

陳坤董潔牽手出席活動,董潔沒變依然清麗脫俗,陳坤卻發(fā)福變樣了

小蔑談事
2026-01-17 11:05:11
2-1,28歲尤文舊將發(fā)威,意甲第18掀翻意甲第8+攬17分逃離降級區(qū)

2-1,28歲尤文舊將發(fā)威,意甲第18掀翻意甲第8+攬17分逃離降級區(qū)

側身凌空斬
2026-01-19 00:45:03
周星馳發(fā)文悼念梁小龍

周星馳發(fā)文悼念梁小龍

界面新聞
2026-01-18 18:39:15
50年毛主席接見一軍區(qū)生產部長,引其妻疑惑,部長:我們關系匪淺

50年毛主席接見一軍區(qū)生產部長,引其妻疑惑,部長:我們關系匪淺

微野談寫作
2026-01-16 06:35:03
韓網熱議!Jennie慶生視頻流出!安全因素+辱女爭議炸出破千高樓

韓網熱議!Jennie慶生視頻流出!安全因素+辱女爭議炸出破千高樓

一盅情懷
2026-01-18 19:31:35
到底什么叫洗錢?網友"完美閉環(huán)"式回答,感覺錯過了一個億

到底什么叫洗錢?網友"完美閉環(huán)"式回答,感覺錯過了一個億

另子維愛讀史
2026-01-09 22:18:04
2012年,廣東老板參加宴請后失蹤,13年后托夢妻子:車庫里找我

2012年,廣東老板參加宴請后失蹤,13年后托夢妻子:車庫里找我

農村情感故事
2025-12-06 07:32:53
換侯有心結?鄭麗文尚未拜會侯友宜談2026,市黨部回應

換侯有心結?鄭麗文尚未拜會侯友宜談2026,市黨部回應

起喜電影
2026-01-19 04:40:53
聶衛(wèi)平病逝!揭秘他與陳祖德的陳年往事:曾因一本書大打出手

聶衛(wèi)平病逝!揭秘他與陳祖德的陳年往事:曾因一本書大打出手

未曾青梅
2026-01-18 20:49:10
張水華清白底色彌足珍貴,知情人:重馬國內前三不止一個有過前科

張水華清白底色彌足珍貴,知情人:重馬國內前三不止一個有過前科

楊華評論
2026-01-18 17:19:15
三星堆竟不屬于任何朝代?考古學家顫抖:中華文明源頭要改寫!

三星堆竟不屬于任何朝代?考古學家顫抖:中華文明源頭要改寫!

芊芊子吟
2026-01-09 11:30:08
巴特勒臨時休戰(zhàn)引熱議!勇士官方評論區(qū)炸鍋:被交易還是有急事?

巴特勒臨時休戰(zhàn)引熱議!勇士官方評論區(qū)炸鍋:被交易還是有急事?

羅說NBA
2026-01-18 10:16:28
2026-01-19 06:44:49
宇宙文明領路人
宇宙文明領路人
科普/科幻作者
300文章數 371關注度
往期回顧 全部

藝術要聞

14位歐美畫家的15幅女性作品

頭條要聞

特朗普建"聯(lián)合國"自任主席 邀60國加入僅1國接受

頭條要聞

特朗普建"聯(lián)合國"自任主席 邀60國加入僅1國接受

體育要聞

21年后,中國男足重返亞洲四強

娛樂要聞

香港武打演員梁小龍去世:享年77

財經要聞

BBA,勢敗如山倒

科技要聞

AI大事!馬斯克:索賠9300億元

汽車要聞

又一次悶聲干大事,奇瑞進入2.0 AI+時代

態(tài)度原創(chuàng)

教育
房產
藝術
旅游
數碼

教育要聞

這鍋該誰來背? 12歲女生因英語作業(yè)自殺,家長告老師敗訴!

房產要聞

真四代來了!這次,?跇鞘袑氐最嵏玻

藝術要聞

14位歐美畫家的15幅女性作品

旅游要聞

瀘溪河畔藏千年,避開商業(yè)化,這座千年古鎮(zhèn)才是真江南!

數碼要聞

保時捷設計推C-Seed折疊電視,售價超三臺911

無障礙瀏覽 進入關懷版