国产av一二三区|日本不卡动作网站|黄色天天久久影片|99草成人免费在线视频|AV三级片成人电影在线|成年人aV不卡免费播放|日韩无码成人一级片视频|人人看人人玩开心色AV|人妻系列在线观看|亚洲av无码一区二区三区在线播放

網(wǎng)易首頁 > 網(wǎng)易號(hào) > 正文 申請(qǐng)入駐

人工智能的下一個(gè)前沿領(lǐng)域是人腦

0
分享至

如果不了解腦機(jī)接口,就無法了解人工智能的長期未來。

為什么會(huì)這樣呢?因?yàn)槟X機(jī)接口(BCI)將在定義人類智能和人工智能如何在擁有強(qiáng)大人工智能的世界中融合方面發(fā)揮核心作用。

對(duì)大多數(shù)人來說,腦機(jī)接口聽起來像是科幻小說。但這項(xiàng)技術(shù)正在迅速成為現(xiàn)實(shí)。腦機(jī)接口在實(shí)際功能和應(yīng)用方面正接近一個(gè)轉(zhuǎn)折點(diǎn)。雖然聽起來有些不可思議,但像心靈感應(yīng)這樣的能力很快就會(huì)成為現(xiàn)實(shí)。

腦機(jī)接口(BCI)領(lǐng)域可以分為兩大類:侵入式方法和非侵入式方法。侵入式BCI方法需要手術(shù),即將電子設(shè)備植入顱骨內(nèi),直接植入大腦內(nèi)部或表面。而非侵入式方法則依賴于位于顱骨外部(例如耳機(jī)或帽子上)的傳感器來解讀和調(diào)節(jié)大腦活動(dòng)。

在本系列文章的第一部分(10 月份發(fā)布)中,我們深入探討了侵入式腦機(jī)接口技術(shù)和相關(guān)初創(chuàng)公司。在本文中,我們將重點(diǎn)關(guān)注非侵入式腦機(jī)接口。

腦機(jī)接口(BCI)和人工智能(AI)的結(jié)合,將在未來幾年重塑人類和文明?,F(xiàn)在正是我們認(rèn)真關(guān)注這項(xiàng)技術(shù)的時(shí)候。


傳感器的寶庫

在深入了解當(dāng)今非侵入式腦機(jī)接口 (BCI) 初創(chuàng)企業(yè)格局之前,讓我們先花點(diǎn)時(shí)間探索一下使非侵入式腦機(jī)接口成為可能的核心技術(shù)。

無論你用大腦做什么——思考、閱讀、說話、移動(dòng)手臂——大腦內(nèi)部都會(huì)發(fā)生一些可感知的物理事件,并遵循一定的模式。具體來說,信息通過微小的電脈沖在大腦神經(jīng)元之間流動(dòng):這種基本的物理力也驅(qū)動(dòng)著燈泡、廚房電器和iPhone等設(shè)備。這些微小的電信號(hào)還會(huì)觸發(fā)大腦中的其他物理活動(dòng),包括磁場(chǎng)和血流的變化。

這些物理變化最終代表著信息。它們的模式編碼著思想、概念、語言和行為。而編碼的信息可以被解碼。這正是腦機(jī)接口的目標(biāo)。

為了以不同的方式解讀(“讀取”)和調(diào)節(jié)(“寫入”)大腦的物理活動(dòng),人們開發(fā)了多種不同的非侵入式傳感器。每種傳感器都有其優(yōu)勢(shì)和劣勢(shì)。為了理解非侵入式腦機(jī)接口(BCI)領(lǐng)域,必須了解這些不同類型的傳感器(也稱為“模態(tài)”)及其工作原理。

世界上最古老的腦電傳感器是腦電圖(EEG)。腦電圖于1924年在德國發(fā)明,如今仍然是世界上應(yīng)用最廣泛的腦電傳感器。

腦電圖(EEG)通過放置在頭皮上的小型電極直接測(cè)量大腦的電活動(dòng)。(電極是一種可以檢測(cè)電活動(dòng)的簡單裝置。)腦電圖在時(shí)間精度方面非常高:它可以以毫秒級(jí)的精度測(cè)量神經(jīng)元活動(dòng)。此外,它還具有價(jià)格低廉、便攜、安全且易于使用等優(yōu)點(diǎn)。

腦電圖最大的缺陷在于其空間定位的不精確性。大腦的電信號(hào)在穿過顱骨和頭皮到達(dá)腦電圖電極的過程中會(huì)發(fā)生嚴(yán)重的失真,導(dǎo)致難以精確定位其在大腦中的起源位置。這是因?yàn)轱B骨和大多數(shù)骨骼一樣,導(dǎo)電性很差。

此外,腦電圖測(cè)量的信噪比很低,因?yàn)榇竽X微弱的電脈沖很容易被附近許多其他電活動(dòng)源所掩蓋,例如:咬緊牙關(guān)、心跳,或者僅僅是環(huán)境電磁干擾。僅僅是眨眼就能產(chǎn)生比大腦電信號(hào)強(qiáng)10到100倍的電活動(dòng)。

因此,從腦電圖噪聲數(shù)據(jù)中提取足夠高保真度的信號(hào),一直是腦電圖應(yīng)用于腦機(jī)接口技術(shù)的一大障礙。

另一種非侵入式腦機(jī)接口技術(shù)在這些方面遠(yuǎn)優(yōu)于腦電圖:腦磁圖(MEG)。

你可能還記得高中物理課上講過,電和磁是同一自然現(xiàn)象——電磁學(xué)——的兩個(gè)統(tǒng)一表現(xiàn)形式。因此,當(dāng)神經(jīng)元放電并產(chǎn)生微弱的電信號(hào)時(shí),它同時(shí)也會(huì)產(chǎn)生微弱的磁場(chǎng)。腦電圖(EEG)測(cè)量的是電信號(hào);腦磁圖(MEG)測(cè)量的是與之相關(guān)的磁場(chǎng)。

與電場(chǎng)相比,磁場(chǎng)最顯著的特點(diǎn)是它幾乎可以完全不受干擾地穿過顱骨和頭皮。因此,MEG的空間分辨率和定位精度遠(yuǎn)高于EEG。

有什么貓膩?

如今的MEG系統(tǒng)體積龐大,需要磁屏蔽腔和低溫冷卻,耗資數(shù)百萬美元。這使得它們對(duì)于日常腦機(jī)接口應(yīng)用而言根本不切實(shí)際。

但目前正在進(jìn)行一些前景可觀的研究,旨在使MEG系統(tǒng)更小更便宜。一種基于光泵磁力計(jì)(OPM-MEG)的新型MEG展現(xiàn)出巨大的潛力:它可在室溫下工作,體積小巧,可以佩戴在頭部,而且所需的屏蔽強(qiáng)度也較低。

OPM-MEG技術(shù)尚未成熟,但未來幾年它有望成為一種重要的新型腦機(jī)接口技術(shù),在避免侵入性手術(shù)的同時(shí),提供比腦電圖(EEG)更高保真度的腦部數(shù)據(jù)。

第三種值得一提的非侵入式腦機(jī)接口技術(shù)是功能性近紅外光譜技術(shù)(fNIRS)。

與腦電圖(EEG)測(cè)量電活動(dòng)或腦磁圖(MEG)測(cè)量磁活動(dòng)不同,功能性近紅外光譜(fNIRS)測(cè)量的是腦血流量。神經(jīng)元放電時(shí),血流量會(huì)增加,因?yàn)榉烹姷纳窠?jīng)元需要更多的營養(yǎng)物質(zhì)。fNIRS傳感器通過顱骨向大腦發(fā)射高波長光束,可以檢測(cè)腦血流量的變化,并利用這些變化模式來解碼腦活動(dòng)。

近紅外光譜成像(fNIRS)如今已成為全球第二大最常用的非侵入式腦機(jī)接口(BCI)傳感器,僅次于腦電圖(EEG)。這很大程度上要?dú)w功于布萊恩·約翰遜(Bryan Johnson)創(chuàng)立的初創(chuàng)公司Kernel在過去十年中所做的努力。Kernel的關(guān)鍵成就在于實(shí)現(xiàn)了fNIRS技術(shù)的微型化,首次將其轉(zhuǎn)化為可穿戴設(shè)備,并實(shí)現(xiàn)了規(guī)?;虡I(yè)化。與EEG一樣,fNIRS安全、便攜且價(jià)格相對(duì)低廉。fNIRS在定位方面比EEG更精確,但在時(shí)間精度方面則不如EEG;因此,這兩種成像方式互為補(bǔ)充,并經(jīng)常結(jié)合使用。

這就引出了目前最熱門、最有前景的非侵入式腦機(jī)接口技術(shù):聚焦超聲。本文將更詳細(xì)地探討超聲技術(shù)。請(qǐng)繼續(xù)閱讀!

要了解非侵入式腦機(jī)接口(BCI)領(lǐng)域的最新進(jìn)展——哪些技術(shù)可行,哪些技術(shù)不可行,以及未來最大的機(jī)遇在哪里——最好的方法是探究當(dāng)今領(lǐng)先的初創(chuàng)公司正在做的事情。讓我們深入了解一下。

利用腦電圖讀取思想

一群低調(diào)的初創(chuàng)公司認(rèn)為,不起眼的腦電圖 (EEG) 有望從一種為人熟知但功能有限的傳感器轉(zhuǎn)變?yōu)槟X機(jī)接口 (BCI) 的主流方法。

腦電圖有很多優(yōu)勢(shì)。然而,幾十年來,人們普遍認(rèn)為腦電圖的信號(hào)質(zhì)量太差,無法支持先進(jìn)的腦機(jī)接口功能。

那么,現(xiàn)代人工智能的一大優(yōu)勢(shì)就是它擁有超乎人類的能力,能夠從嘈雜的數(shù)據(jù)中提取潛在信號(hào),這真是太方便了。

如果你是一位鐵桿深度學(xué)習(xí)信徒——一位“苦澀教訓(xùn)”的極端主義者——那么選擇腦電圖作為你的腦機(jī)接口(BCI)模式是有充分理由的。一言以蔽之:規(guī)模優(yōu)勢(shì)。

當(dāng)前人工智能時(shí)代的特征在于規(guī)?;瓌t。OpenAI 在 2020 年普及了“規(guī)模定律”的概念:人工智能系統(tǒng)會(huì)隨著訓(xùn)練數(shù)據(jù)、模型規(guī)模和計(jì)算資源的增加而穩(wěn)步提升。此后五年間,人工智能的飛速發(fā)展主要?dú)w功于規(guī)模的全面擴(kuò)展。大型語言模型之所以如此強(qiáng)大,是因?yàn)槲覀円呀?jīng)掌握了如何利用人類歷史上幾乎所有書面文本來訓(xùn)練它們的方法。

如果想把在生成式人工智能領(lǐng)域行之有效的策略應(yīng)用到理解人腦,關(guān)鍵在于盡可能多地收集腦訓(xùn)練數(shù)據(jù)。而要收集盡可能多的腦訓(xùn)練數(shù)據(jù),最佳傳感器的選擇顯而易見:腦電圖(EEG)。簡而言之,腦電圖比任何其他腦機(jī)接口(BCI)模式都更具可擴(kuò)展性。

如今,全球腦電圖(EEG)系統(tǒng)的數(shù)量比其他所有腦機(jī)接口(BCI)傳感器加起來還要多幾個(gè)數(shù)量級(jí)。世界上大多數(shù)醫(yī)院都配備了腦電圖設(shè)備;相比之下,全球范圍內(nèi)功能性近紅外光譜(fNIRS)系統(tǒng)可能只有幾千套,腦磁圖(MEG)系統(tǒng)也只有幾百套?;A(chǔ)型腦電圖系統(tǒng)的價(jià)格不到1000美元。

Conduit是一家年輕的初創(chuàng)公司,它以人工智能為先導(dǎo)、規(guī)模化為先導(dǎo),致力于開發(fā)非侵入式腦機(jī)接口(BCI)。這家公司由一位牛津大學(xué)的年輕研究員和一位劍橋大學(xué)的年輕研究員聯(lián)合創(chuàng)立,旨在以最快的速度收集盡可能多的數(shù)據(jù),以訓(xùn)練一個(gè)大型的大腦基礎(chǔ)模型。該公司表示,到今年年底,他們將收集到來自數(shù)千名參與者的超過1萬小時(shí)的腦電波記錄。

雖然 Conduit 主要專注于收集腦電圖數(shù)據(jù),但它也通過其他非侵入式方式進(jìn)行補(bǔ)充,因?yàn)樵摴景l(fā)現(xiàn),如果使用來自每個(gè)用戶的多種傳感器方式進(jìn)行訓(xùn)練,其人工智能的性能會(huì)顯著提高,而不是僅僅使用一種傳感器方式。

Conduit 設(shè)想其技術(shù)有哪些應(yīng)用場(chǎng)景?

令人驚訝的是,該公司的目標(biāo)是打造一款腦機(jī)接口產(chǎn)品,能夠在用戶將想法轉(zhuǎn)化為語言之前就解碼他們的想法。換句話說,他們正致力于開發(fā)意念轉(zhuǎn)文本人工智能。

據(jù)該公司稱,該系統(tǒng)已經(jīng)開始運(yùn)行。Conduit 目前的 AI 模型生成的文本輸出與用戶的想法在語義上匹配度約為 45%,而且無需事先針對(duì)任何特定個(gè)體進(jìn)行微調(diào)即可實(shí)現(xiàn)。

舉幾個(gè)具體的例子能讓這一點(diǎn)更具體一些。

例如,當(dāng)一位參與者想到“房間似乎更冷了”這句話時(shí),人工智能生成了“有微風(fēng),甚至一陣輕柔的風(fēng)”。在另一個(gè)例子中,參與者想到“你有沒有最喜歡的應(yīng)用程序或網(wǎng)站”,人工智能生成了“你有沒有最喜歡的機(jī)器人”。

這項(xiàng)技術(shù)尚未成熟,無法投入市場(chǎng)。45% 的準(zhǔn)確率對(duì)于大眾市場(chǎng)產(chǎn)品來說遠(yuǎn)遠(yuǎn)不夠。而且,目前只有用戶在頭上佩戴一套笨重的傳感器才能達(dá)到這樣的準(zhǔn)確率。但考慮到這項(xiàng)技術(shù)的目標(biāo)是讀取人心,這樣的準(zhǔn)確率仍然令人矚目。而這家公司才剛剛起步。Conduit 公司幾個(gè)月前才開始擴(kuò)大數(shù)據(jù)收集規(guī)模;該公司計(jì)劃未來將其訓(xùn)練數(shù)據(jù)集擴(kuò)大幾個(gè)數(shù)量級(jí)。

想象一下,如果僅僅通過思考就能將細(xì)微的想法傳達(dá)給其他人或計(jì)算機(jī),那將會(huì)有多么大的可能——社會(huì)將會(huì)發(fā)生怎樣的變化。

Conduit聯(lián)合創(chuàng)始人里奧·波普爾表示:“過去十年機(jī)器學(xué)習(xí)領(lǐng)域給我們帶來的最大教訓(xùn)是規(guī)模和數(shù)據(jù)的重要性。與所有數(shù)據(jù)集中的個(gè)體都必須先接受腦部手術(shù)的情況相比,非侵入式方法使我們能夠收集到更大、更多樣化的數(shù)據(jù)集?!?/p>

她的聯(lián)合創(chuàng)始人克萊姆·馮·施滕格爾補(bǔ)充道:“我們創(chuàng)立Conduit是因?yàn)槲覀円庾R(shí)到,如果我們都直接用想法而不是語言思考,人們就能更快地完成事情。而且我們也能更深入地了解彼此以及整個(gè)世界?!?/p>

另一家有趣的年輕創(chuàng)業(yè)公司 Alljoined 也在不斷突破腦電圖技術(shù)的應(yīng)用極限。

與 Conduit 類似,Alljoined 也采用了以人工智能為先導(dǎo)的非侵入式腦機(jī)接口 (BCI) 技術(shù),并押注腦電圖 (EEG) 是合適的模態(tài),因?yàn)樗哂锌蓴U(kuò)展性和易用性。Conduit 的目標(biāo)是將想法解碼為語言,而 Alljoined 的初期重點(diǎn)是將想法解碼為圖像——也就是說,根據(jù)腦電圖讀數(shù)忠實(shí)地再現(xiàn)用戶“腦海中”的圖像,這項(xiàng)任務(wù)被稱為圖像重建。

Alljoined 的首席執(zhí)行官兼聯(lián)合創(chuàng)始人 Jonathan Xu 是開創(chuàng)性論文MindEye2 的合著者之一,該論文表明,基于生成式人工智能的方法僅需少量 fMRI 數(shù)據(jù)即可實(shí)現(xiàn)精確的圖像重建。Alljoined 致力于將這項(xiàng)工作從 fMRI 擴(kuò)展到 EEG 數(shù)據(jù),并且已經(jīng)取得了成功。

下圖展示了Alljoined人工智能系統(tǒng)利用參與者腦電圖數(shù)據(jù)重建的部分圖像示例。正如您所見,重建結(jié)果并非完全精確,但這些結(jié)果代表了目前最先進(jìn)的性能。而且——正如我們?cè)谌斯ぶ悄艿脑S多其他領(lǐng)域所觀察到的那樣——隨著訓(xùn)練數(shù)據(jù)和計(jì)算規(guī)模的擴(kuò)大,系統(tǒng)的性能必將持續(xù)提升。


上排代表人類參與者觀看的圖像,下排代表 Alljoined 的 AI 系統(tǒng)根據(jù)參與者的腦電圖數(shù)據(jù)重建的圖像。

來源:Alljoined

說到訓(xùn)練數(shù)據(jù),Alljoined 去年開源了首個(gè)專門用于腦電圖圖像重建的數(shù)據(jù)集。該數(shù)據(jù)集包含 8 位參與者的腦電圖數(shù)據(jù),每位參與者觀看 10,000 張圖像。免費(fèi)提供這些數(shù)據(jù)應(yīng)該會(huì)極大地推動(dòng)整個(gè)領(lǐng)域的發(fā)展。

Alljoined 最初專注于圖像重建,但該公司也在探索其他應(yīng)用領(lǐng)域。其中一個(gè)極具前景的領(lǐng)域是情感分析——即實(shí)時(shí)、精準(zhǔn)地識(shí)別用戶正在經(jīng)歷的情緒。直接從腦電數(shù)據(jù)中解碼情感具有重要的商業(yè)價(jià)值,例如在市場(chǎng)營銷和消費(fèi)者行為研究領(lǐng)域,而且比目前讓人們自我報(bào)告情緒的方式更加準(zhǔn)確可靠。

最后值得一提的還有一家總部位于以色列的腦電圖初創(chuàng)公司 Hemispheric。

Hemispheric公司由蘋果Face ID技術(shù)的聯(lián)合創(chuàng)始人之一創(chuàng)立,正全力探索腦電圖(EEG)的可擴(kuò)展性規(guī)律。該公司正在世界各地建立腦電圖數(shù)據(jù)采集設(shè)施,并對(duì)這些設(shè)施的搭建方式進(jìn)行系統(tǒng)化和模塊化設(shè)計(jì),以期盡快實(shí)現(xiàn)規(guī)?;?。

這家公司計(jì)劃在未來幾個(gè)月內(nèi)結(jié)束隱秘運(yùn)營,多年來一直致力于開發(fā)一種新型模型架構(gòu),用于訓(xùn)練最先進(jìn)的基礎(chǔ)腦電圖模型。該公司最近成功擴(kuò)展并訓(xùn)練了其首個(gè)數(shù)十億參數(shù)模型。

“一些公司專注于開發(fā)改進(jìn)型非侵入式傳感器,押注更先進(jìn)的硬件將解鎖高精度非侵入式腦機(jī)接口(BCI)產(chǎn)品,”Hemispheric 首席執(zhí)行官兼聯(lián)合創(chuàng)始人 Hagai Lalazar 表示。“我們則持相反觀點(diǎn):我們認(rèn)為現(xiàn)有的非侵入式傳感方式(腦電圖、腦磁圖、功能性近紅外光譜)已經(jīng)足夠,突破將并非來自更先進(jìn)的傳感技術(shù),而是來自對(duì)現(xiàn)有信號(hào)的更精準(zhǔn)解碼。人工智能是算法史上最偉大的革命,但迄今為止,還沒有人能夠大規(guī)模地收集腦活動(dòng)數(shù)據(jù)并訓(xùn)練模型來解碼神經(jīng)數(shù)據(jù)。我們相信,在開發(fā)用于解碼大腦電活動(dòng)‘語言’的人工智能方面取得突破,是實(shí)現(xiàn)非侵入式腦機(jī)接口普及的關(guān)鍵所在?!?/p>

從更宏觀的角度來看,值得注意的是,對(duì)于腦電圖(EEG)與尖端人工智能相結(jié)合能否實(shí)現(xiàn)本文所述的宏偉愿景,仍然存在諸多不確定性和質(zhì)疑。許多觀察人士對(duì)能否從腦電圖讀數(shù)中提取足夠高的信號(hào)數(shù)據(jù)以支持高級(jí)腦機(jī)接口(BCI)應(yīng)用持懷疑態(tài)度,甚至完全否定這種觀點(diǎn)。這種質(zhì)疑主要來自那些專注于侵入式腦機(jī)接口方法的人、那些幾十年來親身經(jīng)歷并運(yùn)用腦電圖局限性的人,以及那些并非來自深度學(xué)習(xí)領(lǐng)域的人士。此外,一些近期研究也對(duì)利用腦電圖進(jìn)行語言解碼的進(jìn)展提出了質(zhì)疑。

懷疑論者或許是對(duì)的。

然而,現(xiàn)實(shí)情況是,無論是懷疑論者、這些以人工智能為先導(dǎo)的腦電圖初創(chuàng)公司,還是世界上任何一位腦機(jī)接口或人工智能專家,都無法確定答案。目前世界上還沒有人大規(guī)模收集腦電圖訓(xùn)練數(shù)據(jù),并用這些數(shù)據(jù)訓(xùn)練大型神經(jīng)網(wǎng)絡(luò),評(píng)估其性能。也沒有人能夠最終驗(yàn)證或證偽腦電圖基礎(chǔ)模型是否存在像大型語言模型那樣的擴(kuò)展規(guī)律這一假設(shè)。

2018 年OpenAI發(fā)布第一個(gè) GPT 模型時(shí),沒有人能夠想象,也沒有人會(huì)相信,在接下來的幾年里,僅僅通過規(guī)?;湍軒砣绱梭@人的性能提升。

只有時(shí)間才能證明,在腦機(jī)接口(BCI)領(lǐng)域,規(guī)?;芊裣裨跈C(jī)器學(xué)習(xí)(LLM)領(lǐng)域那樣卓有成效。如果確實(shí)如此,那就不要忽視腦電圖(EEG)技術(shù)。

用于神經(jīng)調(diào)控的消費(fèi)級(jí)可穿戴設(shè)備

從 Fitbit(被 Google 以 21 億美元收購)到 ōura(最近估值 110 億美元)再到 Apple Watch(年收入超過 100 億美元),近年來許多消費(fèi)可穿戴產(chǎn)品都取得了突破性的成功。

所有這些消費(fèi)級(jí)可穿戴產(chǎn)品有什么共同點(diǎn)?它們都能測(cè)量你的個(gè)人健康指標(biāo),但無法改變這些指標(biāo)。它們只能“讀取”數(shù)據(jù),而不能“寫入”數(shù)據(jù)。(上文討論的腦電圖應(yīng)用案例也同樣只涉及讀取,而不能寫入。)

新一代消費(fèi)級(jí)可穿戴設(shè)備公司正在打造以大腦為中心的產(chǎn)品,這些產(chǎn)品不僅能監(jiān)測(cè)大腦狀態(tài),還能主動(dòng)調(diào)節(jié)大腦活動(dòng)。如果這些產(chǎn)品真能如預(yù)期般發(fā)揮作用,不難想象,其中一款產(chǎn)品可能會(huì)成為下一個(gè)ōura。

一個(gè)有趣的例子是 Somnee Sleep,這是一家初創(chuàng)公司,它制造了一種頭帶,旨在改善用戶的睡眠質(zhì)量。

Somnee 由四位世界頂尖的睡眠科學(xué)家共同創(chuàng)立,其中包括加州大學(xué)伯克利分校教授馬修·沃克博士,他是頗具影響力的著作《我們?yōu)槭裁匆X》的作者。

睡眠是人類最普遍、最重要的精神活動(dòng)。一款能夠顯著改善用戶睡眠的消費(fèi)產(chǎn)品,將蘊(yùn)藏著巨大的市場(chǎng)機(jī)遇:據(jù)統(tǒng)計(jì),每年用于安眠藥的支出高達(dá)800億美元。

Somnee是如何運(yùn)作的?

Somnee的頭帶利用腦電圖(EEG)和其他傳感器追蹤睡眠期間的大腦活動(dòng),并通過人工智能學(xué)習(xí)您特定的睡眠模式和信號(hào)。然后,它會(huì)發(fā)出個(gè)性化的電脈沖,引導(dǎo)您的腦電波進(jìn)入最佳節(jié)律,從而獲得更深層、更高效的睡眠。這種神經(jīng)調(diào)節(jié)技術(shù)被稱為經(jīng)顱電刺激(tES)。


研究表明,Somnee 的消費(fèi)者頭帶在改善睡眠方面比褪黑素有效四倍,比安眠藥(如安必恩)有效 1.5 倍。

來源:Somnee Sleep

它真的有效嗎?

同行評(píng)審的研究表明確實(shí)如此。

最近一項(xiàng)臨床研究表明,Somnee 的產(chǎn)品在提高睡眠效率方面比褪黑素有效四倍,比安眠藥(如安必恩)有效 50%。

在該公司最近完成的另一項(xiàng)研究中,Somnee 的頭帶幫助用戶入睡速度提高了一倍,睡眠時(shí)間延長了 30 多分鐘,翻身次數(shù)減少了三分之一。

美國國家籃球協(xié)會(huì)(NBA)近日宣布與Somnee公司合作,將該公司的產(chǎn)品提供給NBA球員。Equinox健身中心和酒店也將很快提供Somnee的頭帶。

該領(lǐng)域另一家值得關(guān)注的初創(chuàng)公司是總部位于英國的Flow Neuroscience。與Somnee類似,F(xiàn)low的產(chǎn)品也是一款可穿戴頭帶,它利用經(jīng)顱電刺激技術(shù)產(chǎn)生輕柔的個(gè)性化電脈沖,從而調(diào)節(jié)用戶的大腦活動(dòng)。但Somnee專注于改善睡眠,而Flow的產(chǎn)品則旨在對(duì)抗抑郁癥。

抑郁癥會(huì)影響大腦中一個(gè)關(guān)鍵區(qū)域,即背外側(cè)前額葉皮層。抑郁癥患者的該區(qū)域腦細(xì)胞活動(dòng)減弱。Flow 的頭帶可將精確校準(zhǔn)的電刺激直接輸送到背外側(cè)前額葉皮層,從而刺激該區(qū)域并恢復(fù)健康的腦細(xì)胞活動(dòng)模式。

Somnee 和 Flow 都依賴于經(jīng)顱電刺激 (tES)。但 Somnee 使用的是經(jīng)顱交流電刺激 (tACS),而 Flow 使用的是經(jīng)顱直流電刺激 (tDCS)。它們之間有什么區(qū)別呢?簡而言之,像 Flow 這樣的直流電產(chǎn)品會(huì)向大腦提供恒定電流,使神經(jīng)元更容易放電;而像 Somnee 這樣的交流電產(chǎn)品則會(huì)引入振蕩脈沖,從而影響神經(jīng)元放電的節(jié)律和頻率。

與Somnee一樣,F(xiàn)low產(chǎn)品的療效也已在同行評(píng)審的研究中得到驗(yàn)證。去年發(fā)表在《自然醫(yī)學(xué)》雜志上的一項(xiàng)大型臨床試驗(yàn)發(fā)現(xiàn),F(xiàn)low產(chǎn)品在治療抑郁癥方面的療效是抗抑郁藥物的兩倍。該研究顯示,57%使用Flow產(chǎn)品的臨床抑郁癥患者在10周后表示抑郁癥狀已消失。該公司報(bào)告稱,在其數(shù)萬名用戶中,超過75%的用戶在三周內(nèi)就感受到了臨床癥狀的改善。

Flow公司將其產(chǎn)品描述為“以電療為藥”,這個(gè)說法非常貼切。

Somnee 和 Flow 的頭帶均可在網(wǎng)上向公眾購買。

最后值得一提的初創(chuàng)公司是Neurode。Neurode的頭帶利用電刺激來提高用戶的專注力和注意力。該產(chǎn)品既適用于患有注意力缺陷多動(dòng)障礙(ADHD)的人群,也適用于希望提升整體認(rèn)知功能的普通人群。

Flow采用經(jīng)顱直流電刺激(tDCS,一種恒流刺激),Somnee采用經(jīng)顱交流電刺激(tACS,一種節(jié)律性振蕩電流),而Neurode則采用經(jīng)顱隨機(jī)噪聲刺激(tRNS),它提供的電流頻率和振幅均隨機(jī)波動(dòng)。新興研究表明,引入這種隨機(jī)噪聲可以增強(qiáng)神經(jīng)回路中的信號(hào)檢測(cè)能力,從而改善學(xué)習(xí)和注意力。

據(jù)該公司稱,45% 的用戶在使用該產(chǎn)品的第一周內(nèi)就感受到注意力有所提高。

新興的臨床研究表明,像這些公司正在研究的那種使用消費(fèi)級(jí)硬件對(duì)大腦進(jìn)行電刺激,確實(shí)可以對(duì)大腦行為和個(gè)人體驗(yàn)產(chǎn)生顯著影響,影響領(lǐng)域涵蓋睡眠、抑郁和注意力等諸多方面。

“這些初創(chuàng)公司正值良機(jī),”美國食品藥品監(jiān)督管理局(FDA)數(shù)字健康部門前駐場(chǎng)企業(yè)家安德里亞·科拉沃斯補(bǔ)充道,“監(jiān)管體系尚未跟上步伐。FDA的首個(gè)人工智能/機(jī)器學(xué)習(xí)框架于2019年發(fā)布,此后已有近1000種人工智能設(shè)備獲得批準(zhǔn)。正是這一監(jiān)管基礎(chǔ),使得企業(yè)能夠更快地將研究成果應(yīng)用于實(shí)際人體?!?/p>

但這些產(chǎn)品目前都尚未獲得主流市場(chǎng)的認(rèn)可。這些公司能否打造出足夠令人愉悅的產(chǎn)品體驗(yàn)和足夠有效的市場(chǎng)推廣策略,從而將這些設(shè)備推向大眾市場(chǎng)并獲得成功,時(shí)間會(huì)給出答案。

聚焦超聲:下一個(gè)偉大的腦機(jī)接口范式?

如果說有一種腦機(jī)接口技術(shù)最具發(fā)展?jié)摿Α环N能夠超越現(xiàn)有解決方案(包括本文討論的方案)并引領(lǐng)神經(jīng)技術(shù)新范式的方案——那就是聚焦超聲。在當(dāng)今腦機(jī)接口領(lǐng)域,沒有哪個(gè)方向比它更能引起人們的關(guān)注和興奮。

聚焦超聲究竟是什么?它為何如此具有發(fā)展前景?

從根本上講,超聲波只是聲音的一個(gè)子類——也就是說,它是能在空氣和其他物質(zhì)的粒子中傳播的波。人類可以聽到特定頻率范圍內(nèi)的聲波。超聲波就是頻率高于人類耳朵可聽范圍(>20千赫茲)的聲波,但其傳播特性與可聽聲波類似。

超聲波技術(shù)已用于醫(yī)學(xué)成像超過 75 年(任何懷孕過或有親人懷孕的人都會(huì)記得這一點(diǎn))。

腦部聚焦超聲是一項(xiàng)較新的創(chuàng)新技術(shù)——直到 2010 年代才開始逐漸成形。

聚焦超聲的基本原理是精確地發(fā)射多束超聲波,使它們匯聚于大腦中的某一特定點(diǎn)。所有超聲波在該焦點(diǎn)處疊加,產(chǎn)生足夠的能量密度和機(jī)械壓力,從而以特定的方式調(diào)節(jié)該點(diǎn)的神經(jīng)元活動(dòng),同時(shí)不影響超聲波穿過的其他腦組織。(本頁上的兩個(gè)簡單動(dòng)畫圖很好地展示了這一現(xiàn)象,使其易于理解。)

聚焦超聲作為一種腦機(jī)接口技術(shù),具有幾個(gè)獨(dú)特且引人注目的優(yōu)勢(shì)。

首先,它的精度比任何其他非侵入式腦機(jī)接口技術(shù)都要高出幾個(gè)數(shù)量級(jí)。腦電圖(EEG)、功能性近紅外光譜(fNIRS)和經(jīng)顱電刺激(tES)的空間分辨率都只有幾厘米。相比之下,聚焦超聲可以以亞毫米級(jí)的精度靶向大腦中的特定區(qū)域。它可以被視為一束高精度光束,可以精確地瞄準(zhǔn)大腦中想要定位的位置。

其次,聚焦超聲比任何其他非侵入性技術(shù)都能更深入地進(jìn)入大腦。

由于非侵入式傳感器位于顱骨外,它們通常只能探測(cè)并與大腦最外層(即新皮層)進(jìn)行交互。新皮層是高級(jí)認(rèn)知和語言功能的中心,因此,能夠探測(cè)到新皮層的傳感器可以實(shí)現(xiàn)許多有用的應(yīng)用。但是,許多重要的腦區(qū)和功能位于大腦更深層,因此腦電圖(EEG)、功能性近紅外光譜(fNIRS)、經(jīng)顱電刺激(tES)和其他非侵入式傳感器無法觸及。

丘腦、下丘腦、海馬體、基底神經(jīng)節(jié)和杏仁核等深層腦結(jié)構(gòu)調(diào)節(jié)著我們?cè)S多基本驅(qū)動(dòng)力和功能:情緒、記憶、注意力、食欲、情緒、運(yùn)動(dòng)、動(dòng)機(jī)和渴望。精準(zhǔn)調(diào)控這些深層腦區(qū)的能力,有望為帕金森病、強(qiáng)迫癥、抑郁癥、阿爾茨海默病、癲癇、焦慮癥、慢性疼痛和創(chuàng)傷后應(yīng)激障礙等多種神經(jīng)精神疾病帶來強(qiáng)有力的新療法——更不用說還能為普通人群帶來認(rèn)知增強(qiáng)。

此前,只有通過手術(shù)等侵入性方法,例如腦深部刺激(DBS),才能到達(dá)這些更深層的腦區(qū)。除超聲波之外的所有非侵入性療法——無論是電波、磁波、光波還是紅外波——都會(huì)被人體組織衰減,這意味著它們只能傳播有限的距離就會(huì)消散。相比之下,聚焦超聲波是一種機(jī)械波,因此可以幾乎不受組織衰減的影響地穿過人體組織。這使得它能夠在保持高度聚焦的同時(shí),深入大腦內(nèi)部。

這些可能性并非僅僅停留在理論層面。近期研究表明,聚焦超聲可以顯著減輕患者的慢性疼痛;降低嚴(yán)重成癮者的阿片類藥物渴求;并最大限度地減少特發(fā)性震顫患者的震顫癥狀——所有這些都涉及對(duì)大腦深部結(jié)構(gòu)的激活。

超聲波的最后一個(gè)優(yōu)勢(shì)使其區(qū)別于其他所有非侵入性檢查方式:它既能讀取也能寫入,而且都能以高分辨率完成這兩項(xiàng)操作。沒有任何其他單一的非侵入性檢查方式能夠同時(shí)實(shí)現(xiàn)這兩項(xiàng)功能。腦電圖(EEG)、功能性近紅外光譜(fNIRS)和腦磁圖(MEG)可以讀取數(shù)據(jù),但不能寫入數(shù)據(jù)。經(jīng)顱電刺激可以寫入數(shù)據(jù)(盡管分辨率和深度均低于聚焦超聲),但不能讀取數(shù)據(jù)。

讀寫能力解鎖了腦機(jī)接口的圣杯:閉環(huán)功能,即一個(gè)統(tǒng)一的系統(tǒng)可以讀取和解碼正在進(jìn)行的神經(jīng)活動(dòng),然后根據(jù)讀取的內(nèi)容以選擇性和個(gè)性化的方式刺激大腦,然后觀察大腦如何實(shí)時(shí)響應(yīng)和適應(yīng),等等。

與使用一個(gè)設(shè)備進(jìn)行傳感,另一個(gè)設(shè)備進(jìn)行調(diào)制相比,一個(gè)既能讀取又能寫入的設(shè)備可以實(shí)現(xiàn)傳感和刺激之間的完美對(duì)齊、低延遲、簡單的校準(zhǔn)、更少的硬件復(fù)雜性、更高的空間效率、更低的成本,并最終實(shí)現(xiàn)更具可擴(kuò)展性的產(chǎn)品。

超聲波腦機(jī)接口領(lǐng)域的創(chuàng)業(yè)環(huán)境尚處于起步階段,但發(fā)展速度驚人。

目前最受矚目的聚焦超聲初創(chuàng)公司是 Nudge,該公司最近宣布完成由 Thrive 和 Greenoaks 領(lǐng)投的 1 億美元融資。

Nudge 的首席執(zhí)行官兼聯(lián)合創(chuàng)始人 Fred Ehrsam 此前曾聯(lián)合創(chuàng)立 Coinbase 和 Paradigm,這兩家公司都是加密貨幣領(lǐng)域最成功的企業(yè)之一。Nudge 由此延續(xù)了億萬富翁創(chuàng)辦腦機(jī)接口 (BCI) 初創(chuàng)公司的傳統(tǒng),此前 Elon Musk 創(chuàng)立了 Neuralink,Bryan Johnson 創(chuàng)立了 Kernel,Sam Altman 創(chuàng)立了 Merge Labs(下文將詳細(xì)介紹 Merge)。Nudge 的另一位聯(lián)合創(chuàng)始人 Jeremy Barenholtz 此前曾領(lǐng)導(dǎo) Neuralink 的產(chǎn)品和技術(shù)工作。

Nudge 的使命是推進(jìn)聚焦超聲技術(shù)在硬件、人工智能和神經(jīng)科學(xué)領(lǐng)域的全面發(fā)展,從而實(shí)現(xiàn)精準(zhǔn)、強(qiáng)大的非侵入式神經(jīng)調(diào)控。公司初期專注于治療成癮、慢性疼痛和焦慮等神經(jīng)精神疾病,但其最終目標(biāo)是讓大眾都能增強(qiáng)認(rèn)知能力。Nudge 致力于讓每個(gè)人都能精準(zhǔn)、便捷地調(diào)節(jié)自身在學(xué)習(xí)、記憶和睡眠等領(lǐng)域的心理行為。

Nudge 的初始形態(tài)是一個(gè)嵌入核磁共振成像儀中的超聲頭盔。(核磁共振成像儀用于“讀取”圖像。雖然超聲本身也可以用于高分辨率讀取,但 Nudge 最初的核心重點(diǎn)是推進(jìn)聚焦超聲“寫入”技術(shù)的最新發(fā)展。)

該公司的產(chǎn)品功能齊全,幾乎每天都被用于人體研究。這款初始產(chǎn)品不便攜帶,不適合消費(fèi)者使用,但Nudge公司已經(jīng)在研發(fā)一款更小巧的架構(gòu),旨在方便在家中和日常生活中使用。


Nudge 的首款聚焦超聲設(shè)備是 Nudge Zero。

來源:Nudge

正如該公司所說:“想象一下,未來無需阿片類藥物即可緩解慢性疼痛,創(chuàng)傷后應(yīng)激障礙患者可以實(shí)時(shí)調(diào)節(jié)創(chuàng)傷記憶,臨床醫(yī)生可以像檢查患者心率一樣輕松地對(duì)大腦回路進(jìn)行成像和調(diào)節(jié)。想象一下,未來無需咖啡因即可提高注意力,學(xué)習(xí)一門新語言或一項(xiàng)新技能只需幾天或幾周,而不是幾個(gè)月或幾年。這并非科幻小說,而是一份工程路線圖。而我們正在著手實(shí)現(xiàn)它?!?/p>

該領(lǐng)域另一家頗具潛力的初創(chuàng)公司是Sanmai,由亞利桑那大學(xué)教授、聚焦超聲技術(shù)早期先驅(qū)Jay Sanguinetti領(lǐng)導(dǎo)。Sanmai的主要投資人是Reid Hoffman,他主導(dǎo)了該公司近期1200萬美元的融資。

與Nudge類似,Sanmai也專注于超聲波的神經(jīng)調(diào)控能力(即其“寫入”大腦的能力),而非其傳感能力(即其“讀取”大腦的能力)。與Nudge相比,Sanmai更注重嚴(yán)謹(jǐn)?shù)呐R床應(yīng)用,較少面向消費(fèi)者。

三麥的經(jīng)顱聚焦超聲設(shè)備目前正在進(jìn)行臨床研究,有望成為世界上首個(gè)獲得FDA批準(zhǔn)的經(jīng)顱聚焦超聲設(shè)備。


Sanmai 的聚焦超聲設(shè)備是可穿戴的,最初專注于治療帕金森病。

來源:三枚

三麥制藥的首要治療目標(biāo)是帕金森病。全球約有1000萬人患有帕金森病,僅美國每年就新增9萬例,這使其成為一個(gè)重要的市場(chǎng)機(jī)遇。三麥制藥的聯(lián)合創(chuàng)始人之一泰勒·庫恩(Taylor Kuhn)發(fā)表了最早一批研究成果,證明了聚焦超聲在治療帕金森病方面的療效。

我們尚未探討的一個(gè)問題是,聚焦超聲究竟是如何治療帕金森病等腦部疾病的——也就是說,這項(xiàng)技術(shù)的作用機(jī)制是什么。簡而言之,就像大多數(shù)與大腦相關(guān)的問題一樣,我們尚未完全了解其中的細(xì)節(jié)。但帕金森病的案例引人入勝,值得我們深入研究。

帕金森病的主要誘因被認(rèn)為是大腦深部多個(gè)區(qū)域神經(jīng)元內(nèi)α-突觸核蛋白的錯(cuò)誤折疊蛋白的積累。研究表明,利用聚焦超聲的集中機(jī)械能靶向這些深部腦區(qū),可以減少α-突觸核蛋白的毒性積累,從而可能有助于緩解帕金森病的癥狀。

Sanmai計(jì)劃在近期內(nèi)利用聚焦超聲治療的其他疾病包括臨床焦慮癥,這將涉及針對(duì)患者的杏仁核進(jìn)行治療。

“我大約在15年前就開始研究超聲神經(jīng)調(diào)控,”Sanmai首席執(zhí)行官兼聯(lián)合創(chuàng)始人Jay Sanguinetti說道?!爱?dāng)時(shí),大多數(shù)人都懷疑低強(qiáng)度超聲的微弱機(jī)械能是否真的能影響大腦活動(dòng)。作為一名研究生,我閱讀了一些早期的論文——其中一些甚至有近百年的歷史——并感覺其中蘊(yùn)含著一些真實(shí)的東西。早期,我不得不努力爭取讓人們關(guān)注這些數(shù)據(jù)。如今,這個(gè)領(lǐng)域已經(jīng)取得了巨大的進(jìn)步。我們創(chuàng)立Sanmai的初衷是打造首款專為臨床應(yīng)用而設(shè)計(jì)的超聲神經(jīng)調(diào)控設(shè)備,它將嚴(yán)格的安全標(biāo)準(zhǔn)、人工智能輔助的個(gè)性化靶向定位以及實(shí)際的臨床應(yīng)用相結(jié)合,旨在讓臨床醫(yī)生在診療過程中充滿信心?!?/p>

該領(lǐng)域另一家前沿創(chuàng)業(yè)公司是 Forest Neurotech。

Forest Neurotech是一家非營利機(jī)構(gòu)——更確切地說,它是一種新型的非營利創(chuàng)業(yè)公司,稱為聚焦研究組織(FRO)。FRO是一種創(chuàng)新的新型融資結(jié)構(gòu),旨在支持那些規(guī)模龐大或成本高昂,對(duì)傳統(tǒng)學(xué)術(shù)實(shí)驗(yàn)室而言過于龐大或昂貴,但商業(yè)化程度又不足以進(jìn)入產(chǎn)業(yè)界的特定且雄心勃勃的科學(xué)里程碑的實(shí)現(xiàn)。FRO通常擁有類似創(chuàng)業(yè)公司的團(tuán)隊(duì)和文化,但其資金來源是慈善捐贈(zèng),而非風(fēng)險(xiǎn)投資。因此,F(xiàn)orest不追求商業(yè)化,而是專注于推進(jìn)基礎(chǔ)超聲技術(shù)的尖端發(fā)展。

具體來說,福里斯特專注于將超聲波硬件小型化,這是使這項(xiàng)技術(shù)得到廣泛應(yīng)用的關(guān)鍵一步。

而且,該公司在這方面取得了令人矚目的成功。Forest公司最近發(fā)布了其首款設(shè)備——Forest 1腦機(jī)接口,該設(shè)備比傳統(tǒng)的超聲波掃描儀小1000倍,比標(biāo)準(zhǔn)鑰匙扣還要小。


Forest Neurotech 公司的 Forest 1 設(shè)備比標(biāo)準(zhǔn)鑰匙扣還要小,可以使用超聲波進(jìn)行讀寫,設(shè)計(jì)用于植入患者的顱骨內(nèi)。

來源:Forest Neurotech

值得注意的是,F(xiàn)orest 1 設(shè)備能夠利用超聲波進(jìn)行讀寫操作,這使其區(qū)別于 Nudge 和 Sanmai 設(shè)備。它能夠基于血流動(dòng)力學(xué)生成整個(gè)大腦(深度達(dá) 20 厘米)的高分辨率三維圖像,并且還可以進(jìn)行精確的神經(jīng)調(diào)控。

Forest 1 設(shè)備凸顯了超聲波技術(shù)的一個(gè)重要特性。此前,我們一直將超聲波視為一種無需手術(shù)的非侵入式腦機(jī)接口 (BCI) 技術(shù)。事實(shí)上,超聲波可以而且經(jīng)常以非侵入式的方式應(yīng)用:Nudge 和 Sanmai 都采用了非侵入式的超聲波技術(shù)。

但福雷斯特的裝置屬于侵入性操作:需要通過手術(shù)切開患者的頭骨,并將裝置植入其中。

這是為什么呢?

顱骨對(duì)于超聲波來說是一個(gè)很大的挑戰(zhàn),因此將超聲波設(shè)備放入顱骨內(nèi)有很大的優(yōu)勢(shì)。

超聲波穿過大腦等軟組織時(shí)衰減很小,但顱骨則不然。顱骨由骨骼構(gòu)成,對(duì)超聲波的傳播效果很差。顱骨會(huì)反射部分超聲波,吸收部分超聲波,還會(huì)散射和扭曲剩余的超聲波。

如何解釋超聲波與顱骨相互作用以及受顱骨影響的不可預(yù)測(cè)性,是聚焦超聲領(lǐng)域面臨的最大未解工程難題之一。像Nudge和Sanmai這樣的初創(chuàng)公司正在投入大量資源來解決這一難題。

Forest公司針對(duì)這個(gè)問題提出的解決方案是,直接將設(shè)備植入用戶的顱骨內(nèi)。這種方法的優(yōu)點(diǎn)在于完全避免了超聲波穿過顱骨這一棘手問題。缺點(diǎn)是,任何想要使用Forest設(shè)備的患者都必須先接受腦部手術(shù)。天下沒有免費(fèi)的午餐。

Forest公司稱其植入手術(shù)為“微創(chuàng)手術(shù)”,因?yàn)殡m然植入設(shè)備需要打開患者的顱骨,但該設(shè)備不會(huì)穿透患者的腦組織;相反,它位于大腦的保護(hù)性硬腦膜層之上。這使其與Neuralink和猶他陣列等完全侵入式腦機(jī)接口技術(shù)截然不同,后者會(huì)穿透大腦組織。

FRO(前沿研究組織)通常設(shè)定了時(shí)間限制,其理念是,如果團(tuán)隊(duì)實(shí)現(xiàn)了特定的科研目標(biāo),就可以孵化出一家傳統(tǒng)的營利性初創(chuàng)公司,實(shí)現(xiàn)商業(yè)化。因此,不久之后,如果看到一家或多家營利性初創(chuàng)公司從Forest Neurotech組織中涌現(xiàn)出來,也不要感到驚訝。

Forest聯(lián)合創(chuàng)始人威爾·比德曼表示:“多年來,設(shè)備小型化和計(jì)算能力的提升為我們?cè)卺t(yī)療保健領(lǐng)域帶來了更強(qiáng)大的技術(shù)?,F(xiàn)在,借助超聲波技術(shù),我們擁有了實(shí)現(xiàn)無創(chuàng)腦機(jī)接口夢(mèng)想所需的保真度、精確度和理解力?!?/p>

我們將要討論的最后一家超聲波腦機(jī)接口初創(chuàng)公司是所有初創(chuàng)公司中最具雄心和前沿性的:Sam Altman 的 Merge Labs。

Merge公司尚未正式上線,因此目前公開的信息很少。(不過,未來幾天內(nèi)情況可能會(huì)有所改變,請(qǐng)不要感到驚訝?。?/p>

據(jù)報(bào)道,Sam Altman 將擔(dān)任該公司聯(lián)合創(chuàng)始人之一,OpenAI 已向該公司投入巨資,估值達(dá) 8.5 億美元。

Merge公司將以近期超聲波技術(shù)的突破為基礎(chǔ),對(duì)人腦進(jìn)行讀寫操作。但它的目標(biāo)是進(jìn)一步拓展這項(xiàng)技術(shù)的邊界:公司的愿景是將聚焦超聲波與基因編輯相結(jié)合,從而實(shí)現(xiàn)更強(qiáng)大的腦機(jī)接口(BCI)功能。沒錯(cuò),你沒看錯(cuò):超聲波加基因編輯!

這是怎么回事?

簡而言之,基因編輯可以使大腦中特定的神經(jīng)元群以特定方式對(duì)聚焦超聲波產(chǎn)生反應(yīng)。這一新興科學(xué)領(lǐng)域被稱為聲遺傳學(xué)。

首先,可以通過基因工程將一個(gè)特殊基因插入大腦中特定神經(jīng)元亞群的DNA中。該特殊基因可以編碼一種對(duì)機(jī)械力敏感的特定蛋白質(zhì)。由于聚焦超聲會(huì)產(chǎn)生微小的機(jī)械擾動(dòng),因此這些特定神經(jīng)元中的這種特定蛋白質(zhì)會(huì)對(duì)聚焦超聲的作用產(chǎn)生反應(yīng)。具體來說,這種蛋白質(zhì)通常是一種離子通道,當(dāng)受到聚焦超聲作用時(shí),它會(huì)按需打開或關(guān)閉。

與不涉及基因編輯的聚焦超聲相比,聲致遺傳學(xué)方法能夠?qū)Υ竽X活動(dòng)進(jìn)行更加精準(zhǔn)和個(gè)性化的控制。它能夠靶向大腦中的特定神經(jīng)元和神經(jīng)元類型,同時(shí)不影響其他神經(jīng)元:例如,僅影響興奮性神經(jīng)元而不影響抑制性神經(jīng)元,或者僅影響表達(dá)特定受體的神經(jīng)元,或者僅影響特定的腦回路(例如,與某些成癮行為相關(guān)的特定投射通路)。

聲波成像方法還可以更直接地定義和控制聚焦超聲作用于大腦神經(jīng)元的機(jī)制,從而確定其作用效果,并據(jù)此將新的基因和蛋白質(zhì)引入神經(jīng)元。

加州理工學(xué)院著名教授米哈伊爾·夏皮羅是這一新興研究領(lǐng)域的先驅(qū)之一。據(jù)報(bào)道,夏皮羅已加入 Merge Labs,這對(duì)該公司來說無疑是一項(xiàng)重大勝利。

即使在腦機(jī)接口這一前沿領(lǐng)域,Merge Labs 正在探索的方法也堪稱最具前沿性和“科幻色彩”。一些基本的科學(xué)問題仍有待解決。即便最終能夠成功,這一愿景的實(shí)現(xiàn)也至少需要十年或更長時(shí)間。

無聲的語言

最后值得討論的一種非侵入式創(chuàng)業(yè)類別是無聲演講。

無聲語言技術(shù)能夠感知并解碼某人試圖說或想象要說的話,即使他們沒有大聲說出這些話。(因此,它也被稱為默讀。)

無聲語言技術(shù)與本文討論的其他技術(shù)和初創(chuàng)公司有一個(gè)關(guān)鍵區(qū)別:它不涉及直接解碼大腦信號(hào)。相反,它關(guān)注的是大腦下游的物理信號(hào)——特別是與說話意圖相關(guān)的面部和嘴部信號(hào)。

無聲語言是如何運(yùn)作的?其基本原理是,當(dāng)一個(gè)人試圖說話時(shí),即使沒有發(fā)出任何聲音,其言語系統(tǒng)中的各種電生理和肌肉機(jī)制(例如舌頭、嘴唇、下頜)也會(huì)啟動(dòng)。這些生理機(jī)制是可以被檢測(cè)和解碼的。

目前對(duì)于實(shí)現(xiàn)無聲說話的最佳技術(shù)方案尚未達(dá)成共識(shí)。不同的公司正在探索不同的方法,而且一般來說,無聲說話初創(chuàng)公司對(duì)其技術(shù)細(xì)節(jié)高度保密。我們可以確定的是:從人臉解碼試圖說話或想象說話的物理特征的可行方法包括基于生物磁、光學(xué)和射頻數(shù)據(jù)的技術(shù)。

在思考無聲言語時(shí),設(shè)想一系列可能性會(huì)很有幫助:從(1)完全正常的言語,到(2)耳語但仍然可以聽到的言語,到(3)聽不到但嘴巴完全張開的言語,到(4)部分張開的言語(例如,人的嘴巴保持閉合,但舌頭在嘴里移動(dòng)),到(5)幾乎不涉及任何身體動(dòng)作的“言語”,只是在腦海中構(gòu)思和發(fā)出詞語。

所有無聲語音識(shí)別公司都在致力于開發(fā)能夠解碼低聲語音的技術(shù),即上文第 (3) 類和第 (4) 類語音。無聲語音識(shí)別技術(shù)能否可靠地破解第 (5) 類語音——通常被稱為“想象語音”——還有待觀察。

近年來,語音作為一種高效、便捷且直觀的交互方式,在人工智能時(shí)代迅速普及。無聲語音的優(yōu)勢(shì)在于,它能讓人們以語音作為交互界面——與他人交流、搜索互聯(lián)網(wǎng)、記筆記、回復(fù)電子郵件等等——而且無論身處何地,無論是在辦公室、擁擠的咖啡館、地鐵還是街頭,都能私密且隱蔽地進(jìn)行這些操作。

大多數(shù)致力于研發(fā)無聲語音技術(shù)的公司都設(shè)想將這項(xiàng)技術(shù)嵌入到耳機(jī)或藍(lán)牙耳機(jī)等消費(fèi)產(chǎn)品中。在產(chǎn)品外形中加入某種耳塞至關(guān)重要,因?yàn)樗軐?shí)現(xiàn)私密的低聲輸入與私密音頻輸出的閉環(huán)連接——例如,用戶不僅可以隱蔽地查詢?nèi)斯ぶ悄苣P停€可以隱蔽地接收回復(fù)。

雖然目前有不少前景看好的初創(chuàng)公司正在研發(fā)無聲語音技術(shù),但迄今為止只有一家公司公開亮相:那就是麻省理工學(xué)院的衍生公司 AlterEgo。AlterEgo 兩個(gè)月前發(fā)布了一段 3 分鐘的宣傳視頻,值得一看,可以幫助你更直觀地了解無聲語音的概念。

AlterEgo 首席執(zhí)行官兼聯(lián)合創(chuàng)始人 Arnav Kapur 表示:“目前與計(jì)算機(jī)和人工智能交互的方式受限于你在屏幕和鍵盤上點(diǎn)擊和打字的速度。在智能時(shí)代,我們需要一個(gè)從零開始構(gòu)建的全新界面——一個(gè)感覺像是人類思維自然延伸的界面。為了實(shí)現(xiàn)這一點(diǎn),我們必須發(fā)明一些全新的東西。”

預(yù)計(jì)到 2026 年,會(huì)有更多資金雄厚、實(shí)力雄厚的無聲演講競(jìng)爭者從幕后走向臺(tái)前。

坊間盛傳,蘋果和谷歌等科技巨頭正在認(rèn)真探索將無聲語音功能作為未來消費(fèi)硬件產(chǎn)品的核心技術(shù)。同樣,也有傳言稱,由蘋果前傳奇設(shè)計(jì)師喬納森·艾維領(lǐng)銜設(shè)計(jì)的OpenAI即將推出的原生AI消費(fèi)設(shè)備也將具備無聲語音功能。

因此,我們預(yù)計(jì)在中短期內(nèi),該初創(chuàng)企業(yè)領(lǐng)域?qū)?huì)出現(xiàn)一些備受矚目的并購交易。

但無聲語言要成為人機(jī)交互領(lǐng)域的一個(gè)重要新范式,還需要克服一些障礙。

首先,無聲語音產(chǎn)品的廣泛應(yīng)用將需要消費(fèi)者行為和社會(huì)規(guī)范發(fā)生重大改變。如今,有多少人會(huì)樂意使用一種需要在辦公室或咖啡館里默默地用嘴型說話的產(chǎn)品呢?

無聲言語面臨的更根本風(fēng)險(xiǎn)在于,其他能更直接地與大腦交互的腦機(jī)接口技術(shù)可能會(huì)超越它,并使其功能黯然失色。如果能夠直接從大腦提取高保真度的語言信號(hào)——例如,如果人工智能驅(qū)動(dòng)的腦電圖或下一代超聲成像技術(shù)能夠充分發(fā)揮其潛力(如上所述)——那么我們?yōu)槭裁催€要費(fèi)心研究默念呢?無聲言語或許比可聽見的言語更私密,延遲也比打字更低,但思想的私密性和延遲都遠(yuǎn)勝于上述所有方式。

事實(shí)上,這些技術(shù)都尚未成熟,無法真正投入市場(chǎng)。它們各自發(fā)展迅速,潛力巨大,但都可能面臨性能瓶頸或難以實(shí)現(xiàn)產(chǎn)品化。這些技術(shù)究竟能以多快的速度發(fā)展,最終融入人們使用和喜愛的產(chǎn)品中,時(shí)間會(huì)給出答案。

結(jié)論

縱觀人類文明,技術(shù)進(jìn)步的一個(gè)顯著特征就是通信和信息傳輸?shù)乃俣取捄蜏?zhǔn)確性的提升。文字的發(fā)明、古騰堡的印刷機(jī)、電報(bào)、無線電、電話、互聯(lián)網(wǎng)——所有這些技術(shù)飛躍的本質(zhì)都是為了增強(qiáng)人類共享信息的能力。

總的來說,當(dāng)更多的人能夠更有效地相互交流更多信息時(shí),就會(huì)帶來各種各樣事先無法預(yù)測(cè)的積極影響:科學(xué)進(jìn)步、健康進(jìn)步、生產(chǎn)力提高、教育進(jìn)步、以及我們對(duì)彼此和宇宙的理解加深。

腦機(jī)接口代表了數(shù)千年來技術(shù)進(jìn)步的必然下一步。

信息在人與機(jī)器之間直接往返于大腦是最有效的傳遞方式。它消除了對(duì)有損信息的中間環(huán)節(jié)的需求,包括語言本身。畢竟,語言本身就是一種高度有損的壓縮:想想看,你內(nèi)心深處的心理體驗(yàn),其所有細(xì)節(jié),與你能用語言表達(dá)的程度之間,存在著多么巨大的差異。

高性能腦機(jī)接口(BCI)將開啟各種奇妙而寶貴的可能性。近期影響將體現(xiàn)在醫(yī)療領(lǐng)域,這將為全球數(shù)百萬患有各種神經(jīng)精神疾病或心理健康問題的患者帶來深遠(yuǎn)的益處。但這僅僅是個(gè)開始。試想一下,只需將新技能——比如空手道、潛水或高爾夫——“上傳”到大腦,直接強(qiáng)化相應(yīng)的神經(jīng)通路,就能瞬間掌握這些技能。試想一下,能夠以完美的“感官保真度”回憶和重溫任何記憶。試想一下,能夠重新編程大腦,使其看到或感受到如今人類大腦無法直接感知的事物:Wi-Fi信號(hào)、無線電波,甚至是“正北”方向。

更重要的是,我們甚至還無法想象腦機(jī)接口將帶來的最深刻的變革和機(jī)遇——就像十四世紀(jì)的人們無法想象印刷書籍將以各種方式改變社會(huì)(民主、科學(xué)方法、啟蒙運(yùn)動(dòng));或者 20 世紀(jì) 80 年代的人們無法想象互聯(lián)網(wǎng)將以各種方式改變社會(huì)(比特幣、云計(jì)算、優(yōu)步)一樣。

從長遠(yuǎn)來看,腦機(jī)接口技術(shù)在社會(huì)上的普及是不可避免的。然而,目前遠(yuǎn)未確定的是,腦機(jī)接口技術(shù)的主流方法究竟是無創(chuàng)的、有創(chuàng)的,還是兩者兼而有之。

如今,鮮有其他技術(shù)領(lǐng)域像腦機(jī)接口(BCI)這樣,讓眾多見多識(shí)廣的觀察者對(duì)該領(lǐng)域的未來發(fā)展方向持有如此截然相反的觀點(diǎn)。一些專家基于簡單的物理定律,提出了令人信服的論證,認(rèn)為最先進(jìn)的腦機(jī)接口技術(shù)始終需要與大腦進(jìn)行直接的物理連接,因此必然需要手術(shù)。另一些專家則同樣令人信服地指出,鑒于非侵入式技術(shù)在可擴(kuò)展性、安全性和易用性方面的巨大優(yōu)勢(shì),它們才是該領(lǐng)域發(fā)展的必然趨勢(shì);而且,傳感、解碼和調(diào)制技術(shù)的進(jìn)步只是時(shí)間問題,最終即使是最先進(jìn)的腦機(jī)接口應(yīng)用也能以非侵入式的方式實(shí)現(xiàn)。還有一些專家則認(rèn)為,直接作用于大腦本身并非必要,像無聲語音這樣的具有劃時(shí)代價(jià)值的產(chǎn)品將基于大腦下游的信號(hào)構(gòu)建。

未來幾年,這些技術(shù)將從實(shí)驗(yàn)室走向我們生活的方方面面。做好準(zhǔn)備吧。

The Next Frontier For AI Is The Human Brain

ByRob Toews,Contributor. I write about the big picture of artificial intelligence.

Follow Author

Dec 07, 2025, 05:45pm ESTDec 07, 2025, 11:45pm EST

Sam Altman and Elon Musk's rivalry has grown beyond AI to brain-computer interfaces.

SOURCE: GETTY

It is not possible to understand the long-term future of artificial intelligence without understanding brain-computer interfaces.

Why is that? Because brain-computer interfaces (BCI) will play a central role in defining how human intelligence and artificial intelligence fit together in a world with powerful AI.

To most people, brain-computer interfaces sounds like science fiction. But this technology is getting real, quickly. BCI is nearing an inflection point in terms of real-world functionality and adoption. Far-fetched though it may sound, capabilities like telepathy will soon be possible.

The world of BCI can be divided into two main categories: invasive approaches and non-invasive approaches. Invasive approaches to BCI require surgery. They entail putting electronics inside the skull, directly in or on the brain. Non-invasive approaches, on the other hand, rely on sensors that sit outside the skull (say, on headphones or a hat) to interpret and modulate brain activity.

In the first part of this article series, published in October, we dove deep into invasive BCI technologies and startups. In this article, we turn our attention to non-invasive BCI.

Together, BCI and AI will reshape humanity and civilization in the years ahead. Now is the time to start paying serious attention to this technology.

MORE FOR YOU

Disappointing News About The ‘Pluribus’ Season 2 Release Date On Apple TV

Bitcoin Braced For $30 Trillion Fed Bombshell After Trump Confirms ‘Immediate’ Price Game-Changer

Google Confirms Android Attacks—No Fix For Most Samsung Users

A Cornucopia of Sensors

Before we walk through today’s non-invasive BCI startup landscape, let’s spend a moment exploring the core technologies that make non-invasive BCI possible.

Whenever you use your brain to do anything—think a thought, read a book, speak a sentence, move your arm—detectable physical events take place inside your brain in certain patterns. Specifically, information flows through your brain’s neurons via tiny pulses of electricity: the same basic physical force that powers lightbulbs and kitchen appliances and iPhones. These tiny electrical signals trigger other physical activities in your brain as well, including changes in magnetic fields and blood flow.

These physical changes ultimately represent information. Their patterns encode thoughts, concepts, words, actions. And information that is encoded can be decoded. That is what brain-computer interfaces seek to do.

A number of different non-invasive sensors have been developed in order to both interpret (“read”) and modulate (“write”) the brain’s physical activities in different ways. Each has strengths and weaknesses. In order to understand the field of non-invasive BCI, it is essential to understand these different sensor types (also referred to as “modalities”) and the mechanisms by which they operate.

Read More

The world’s oldest brain sensor is the electroencephalogram, or EEG. Invented in 1924 in Germany, EEG today remains the most widely used brain sensor in the world.

EEG directly measures electrical activity from the brain using small electrodes placed on the scalp. (Electrodes are simple devices that can detect electrical activity.) EEG is highly precise from a timing perspective: it can measure neuronal activity with millisecond-level accuracy. It is also inexpensive, portable, safe and easy to use.

EEG’s great weakness is how imprecise it is from a spatial perspective. The brain’s electrical signals get heavily distorted as they pass through the skull and scalp on the way to the EEG’s electrodes, making it difficult to pinpoint exactly where in the brain they originated. This is because the skull, like most bone, is a terrible conductor of electricity.

Relatedly, EEG measurements have poor signal-to-noise ratio because the brain’s tiny electrical pulses can easily be drowned out by many other nearby sources of electrical activity: a jaw clenching, a heart beating, or just ambient electromagnetic interference. Simply blinking your eyes can generate electrical activity that is 10 to 100 times stronger than the electrical signals from your brain.

Extracting sufficiently high-fidelity signal from EEG’s noisy data thus represents a long-standing obstacle to using EEG for BCI technology.

Another non-invasive BCI modality is vastly superior to EEG on these dimensions: magnetoencephalography (MEG).

As you may remember from high school physics, electricity and magnetism are two unified aspects of the same underlying natural phenomenon: electromagnetism. So when a neuron fires and generates a tiny electrical signal, it generates a tiny magnetic field at the same time. EEG measures the electrical signal; MEG measures the associated magnetic field.

Compared to electrical fields, the remarkable thing about magnetic fields is that they pass through the skull and scalp almost completely undistorted. As a result, MEG has far greater spatial resolution and localization accuracy than EEG.

What’s the catch?

Today’s MEG systems are room-sized, requiring a magnetically shielded chamber and cryogenic cooling. They cost millions of dollars. This makes them hopelessly impractical for everyday BCI applications.

But promising research is underway to make MEG systems smaller and cheaper. A newer type of MEG based on optically pumped magnetometers (OPM-MEG) shows great promise: it works at room temperature, is small enough to wear on the head and requires less intensive shielding.

OPM-MEG technology is not yet ready for primetime. But it could become an important new BCI modality in the years ahead, offering higher-fidelity brain data than EEG while still avoiding invasive surgery.

A third non-invasive BCI modality worth mentioning is functional near-infrared spectroscopy, or fNIRS.

Instead of measuring electrical activity like EEG does, or magnetic activity like MEG does, fNIRS measures blood flow. Blood flow increases to neurons when they fire because neurons that are firing require more nutrients. By beaming high-wavelength light through the skull and into the brain, fNIRS sensors can detect changes in blood flow and use those patterns to decode brain activity.

fNIRS is today the second most common non-invasive BCI sensor in the world, behind only EEG. This is thanks in large part to the efforts of Bryan Johnson’s startup Kernel over the past decade. Kernel’s key achievement was to miniaturize fNIRS technology, turning it for the first time into a wearable device that could be commercialized at scale. Like EEG, fNIRS is safe, portable and comparatively cheap. fNIRS is more accurate than EEG in terms of location but less accurate than EEG in terms of timing; the two modalities are thus complementary and often used in tandem.

This brings us to today’s buzziest and most promising non-invasive BCI modality of all: focused ultrasound. We will have much more to say about ultrasound in this article. Read on!

The best way to understand the state of the art in non-invasive BCI—what is possible, what is not possible, where the biggest future opportunities lie—is to explore what today’s leading startups are doing. Let’s dive in.

Reading Minds with EEG

A cohort of stealthy startups believes that humble EEG is poised to transform from a familiar but limited sensor into the dominant approach to BCI.

EEG has many advantages. For decades, though, conventional wisdom has held that EEG’s signal quality is simply too poor to support advanced BCI capabilities.

How convenient, then, that one of modern AI’s great strengths is its superhuman ability to extract latent signal from noisy data.

If you are a hardcore deep learning disciple—a “Bitter Lesson” maximalist—there are good reasons for EEG to be your BCI modality of choice. In one word: scale.

The current era of AI has been defined by the principle of scaling. OpenAI popularized the concept of “scaling laws” in 2020: the idea that AI systems predictably improve as training data, model size and compute resources increase. AI’s dramatic advances in the half-decade since then have resulted, more than anything else, from scaling everything up. The reason that large language models are so astonishingly capable is that we figured out how to train them on more or less all the written text that humanity has ever produced.

If one wanted to take the playbook that has worked so well for generative AI and apply it to understanding the human brain, the key would be to collect as much brain training data as possible. And if one wanted to collect as much brain training data as possible, the best sensor to choose would be obvious: EEG. EEG is, put simply, far more scalable than any other BCI modality.

There are several orders of magnitude more EEG systems in the world today than every other kind of BCI sensor combined. EEG devices can be found in most hospitals in the world; by contrast, there are perhaps a few thousand fNIRS systems and a few hundred MEG systems globally. Basic EEG systems are available for under $1,000.

One young startup that exemplifies this AI-first, scaling-first approach to non-invasive BCI is Conduit. Cofounded by one young Oxford researcher and one young Cambridge researcher, Conduit is collecting as much data as possible as quickly as possible in order to train a large foundation model for the brain. The company says it will have collected over 10,000 total hours of brain recordings from several thousand participants by the end of the year.

While Conduit is focused primarily on collecting EEG data, it supplements this with other non-invasive modalities because the company has found that its AI’s performance improves dramatically when trained on multiple sensor modalities from each user rather than just one.

What use case is Conduit envisioning for its technology?

The company’s goal is—astonishingly—to build a BCI product that can decode users’ thoughts before they have even formulated those thoughts into words. In other words, they are seeking to build thought-to-text AI.

And according to the company, the system is already beginning to work. Conduit’s current AI model produces text outputs that achieve ~45% semantic matches with users’ thoughts, and can do so zero-shot (meaning that the AI system is not fine-tuned on any particular individual ahead of time).

A few specific examples will help make this more concrete.

In one example, when a human participant thought the phrase “the room seemed colder,” the AI generated the phrase “there was a breeze even a gentle gust.” In another example, the participant thought “do you have a favorite app or website” and the AI generated “do you have any favorite robot.”

This technology is not yet ready for primetime. 45% accuracy is not good enough for a mass-market product. And, for now, these results are only possible when users put an unwieldy suite of sensors on their heads. But this level of accuracy is nonetheless remarkable when considering that the task at hand is reading people’s minds. And the company is just getting started. Conduit only began scaling its data collection efforts a few months ago; the company plans to increase its training data corpus by several orders of magnitude moving forward.

Imagine what might become possible—imagine how society might change—if it were possible to communicate nuanced ideas to other people and to computers merely by thinking them.

"The biggest lesson from ML in the last decade has been the importance of scale and data,” said Conduit cofounder Rio Popper. “Noninvasive approaches let us collect a much larger and more diverse dataset than we’d be able to if everyone in our dataset had to get brain surgery first.”

Added her cofounder Clem von Stengel: “We founded Conduit because we realized that people could get things done so much faster if we all thought directly in ideas rather than in words. And we could have a much richer understanding of each other and of the world in general.”

Another interesting young startup pushing the limits of what is possible with EEG is Alljoined.

Alljoined, like Conduit, is taking an AI-first approach to non-invasive BCI and is betting on EEG as the right modality given its scalability and accessibility. While Conduit’s goal is to decode thoughts into language, Alljoined’s initial focus is to decode thoughts into images—that is, to faithfully reproduce an image that a user has in his or her “mind’s eye” based on EEG readings, a task known as image reconstruction.

Alljoined’s CEO/cofounder Jonathan Xu co-authored the seminal MindEye2 paper, which showed that generative AI-based methods could achieve accurate image reconstruction based on only modest amounts of fMRI data. Alljoined set out to extend that work from fMRI to EEG data—and has already had success doing so.

The graphics below show some examples of images that Alljoined’s AI system reconstructed from participants’ EEG data. As you can see, the reconstructed outputs are not fully accurate, but these results represent state-of-the-art performance today. And—as we have observed in so many other fields in AI—it is a safe bet that the system’s performance will continue to improve as training data and compute scale.

The top row represents the image that a human participant looked at, and the bottom row represents the image that Alljoined's AI system reconstructed based on the participant's EEG data.

SOURCE: ALLJOINED

Speaking of training data, last year Alljoined open-sourced the first-ever dataset specifically built for image reconstruction from EEG. The dataset contains EEG data from 8 different participants looking at 10,000 images each. Making this data freely available should serve as a helpful catalyst for the entire field.

While Alljoined’s initial focus has been on image reconstruction, the company is also exploring other application areas. One promising area is sentiment analysis—the ability to accurately and granularly identify the emotion that a user is experiencing in real-time. Decoding sentiments directly from brain data could have significant commercial relevance, for instance in marketing and consumer behavior research, and would be far more high-fidelity than the current status quo of asking individuals to self-report their emotions.

One final EEG startup worth mentioning is Israel-based Hemispheric.

Founded by one of the co-creators of Apple’s FaceID technology, Hemispheric is going all in on the pursuit of scaling laws for EEG. The company is establishing EEG data collection facilities around the world, systematizing and modularizing how these facilities are set up in order to scale as quickly as possible.

The company, which plans to come out of stealth mode in the coming months, has spent years developing a novel model architecture to train a state-of-the-art foundation EEG model. The company recently successfully scaled and trained its first multi-billion-parameter model.

“Some companies are focused on developing improved non-invasive sensors, betting that better hardware will unlock high-precision non-invasive BCI products,” said Hemispheric CEO/cofounder Hagai Lalazar. “We are making the opposite bet: that current non-invasive sensing modalities (EEG, MEG, fNIRS) suffice, and that the breakthrough will come not from better sensing but from better decoding of existing signals. AI is the biggest revolution in the history of algorithms, but so far no one has scaled brain activity data collection and model training for decoding neural data. We believe that a breakthrough in developing AI for decoding the ‘language’ of the brain’s electrical activity is the missing link to making non-invasive BCIs pervasive.”

Zooming out, it is important to note that plenty of uncertainty and skepticism still exist as to whether EEG paired with cutting-edge AI will be able to deliver on the lofty visions outlined here. Many observers are doubtful or downright dismissive of the idea that sufficiently high-signal data can ever be extracted from EEG readings to enable advanced BCI use cases. Much skepticism comes in particular from those who focus on invasive approaches to BCI, those who have witnessed and worked with EEG’s limitations first-hand for decades, and/or those who do not come from the world of deep learning. And some recent research has cast doubt on progress in language decoding from EEG.

The skeptics may prove to be right.

The reality, though, is that no one—not the skeptics, not these AI-first EEG startups, not any BCI or AI expert in the world—knows for sure. No one in the world has yet collected EEG training data at massive scale and trained a large neural network on it and assessed its performance. No one has yet definitively validated or falsified the hypothesis that scaling laws exist for EEG foundation models like they do for large language models.

When OpenAI published the first GPT model in 2018, no one could have conceived of, and no one would have believed, the breathtaking performance gains that would result over the next few years from sheer scaling.

Only time will tell whether scaling will prove anywhere near as productive in the world of BCI as it has for LLMs. If it does, don’t sleep on EEG.

Consumer Wearables for Neuromodulation

From FitBit (acquired by Google for $2.1 billion) to ōura (recently valued at $11 billion) to Apple Watch (generating well over $10 billion in annual revenue), a number of consumer wearable products have achieved breakout success in recent years.

What do all these consumer wearable products have in common? They measure your personal health metrics, but they cannot change them. They can only “read”; they cannot “write”. (The EEG use cases discussed above all likewise involve only reading, not writing.)

A new generation of consumer wearable companies is building brain-focused products that don’t just monitor your brain state but actively modulate it. If these products work as expected, it’s not hard to imagine that one of them could become the next ōura.

One intriguing example is Somnee Sleep, a startup that has built a headband to improve the quality of its users’ sleep.

Somnee was co-founded by four of the world’s leading sleep scientists, including UC Berkeley professor Dr. Matthew Walker, author of the influential book Why We Sleep.

No mental activity is more universal or more important than sleep. A consumer product that could significantly improve users’ sleep could unlock a massive market opportunity: as a point of reference, $80 billion is spent on sleeping pills annually.

How does Somnee work?

Somnee’s headband uses EEG and other sensors to track your brain’s activity during sleep, learning its particular sleep patterns and signals using AI. It then sends out personalized electrical pulses that nudge your brainwaves into their optimal rhythms for deeper, more efficient sleep. This neuromodulation technology is known as transcranial electrical stimulation, or tES.

Research shows that Somnee's consumer headband is four times more effective than melatonin and 1.5 times more effective than sleeping pills like Ambien at improving sleep.

SOURCE: SOMNEE SLEEP

Does it actually work?

Peer-reviewed research suggests that it does.

One recent clinical study showed that Somnee’s product is four times more effective than melatonin and 50% more effective than sleeping pills like Ambien at improving sleep efficiency.

In another study that the company recently completed, Somnee’s headband helped users fall asleep twice as fast, stay asleep more than 30 minutes longer and reduce tossing and turning by one-third.

The National Basketball Association recently announced that it is partnering with Somnee to make the company’s product available to NBA players. Equinox will also soon make Somnee’s headbands available in its gyms and hotels.

Another noteworthy startup in this category is UK-based Flow Neuroscience. Similar to Somnee, Flow’s product is a wearable headband that uses transcranial electrical stimulation to generate gentle personalized electrical pulses that modulate its user’s brain activity. But while Somnee focuses on improving sleep, Flow’s product is designed to combat depression.

Depression affects a key region of the brain called the dorsolateral prefrontal cortex. In depressed individuals, the brain cells in this region become less active. Flow’s headband delivers precisely calibrated electrical stimulation directly to the dorsolateral prefrontal cortex in order to stimulate this region and restore healthy brain cell activity patterns.

Both Somnee and Flow rely on transcranial electrical stimulation (tES). But while Somnee uses transcranial alternating current stimulation (tACS), Flow makes use of transcranial direct current stimulation (tDCS). What’s the difference? In short, direct current products like Flow provide a constant current to the brain that make neurons generally more likely to fire, while alternating current products like Somnee introduce an oscillating pulse that influences the rhythms and frequencies at which neurons fire.

Like Somnee, the efficacy of Flow’s product has been validated in peer-reviewed studies. A large clinical trial published last year in Nature Medicine found that the Flow product is twice as effective at addressing depression as antidepressant drugs. According to the study, 57% of clinically depressed patients who used the Flow product reported that they no longer had depression after 10 weeks. The company reports that, of its total user base of tens of thousands of customers, over 75% see some clinical improvement within three weeks.

Flow describes its product as “electricity as medicine.” It is an apt phrase.

Both Somnee and Flow’s headbands are available online to the general public.

One final startup worth mentioning is Neurode. Neurode’s headband uses electrical stimulation to improve its users’ focus and attention. The product is intended both for individuals with ADHD and for members of the broader population looking to boost their overall cognitive functioning.

While Flow uses tDCS (a constant current) and Somnee uses tACS (a rhythmically oscillating current), Neurode uses transcranial random noise stimulation, or tRNS, which delivers current that fluctuates randomly in both its frequency and amplitude. Emerging research suggests that introducing this random noise can boost signal detection in neural circuits, thus improving learning and focus.

According to the company, 45% of its users experience an increase in focus within the first week of using the product.

An emerging body of clinical research indicates that electrical stimulation of the brain with consumer-grade hardware, like these companies are pursuing, can indeed meaningfully influence brain behavior and individual experience in areas as diverse as sleep, depression and focus.

“These startups are building at the right moment,” added Andrea Coravos, a former Entrepreneur in Residence in the FDA’s Digital Health Unit. “The regulatory infrastructure isn’t playing catch-up. The FDA’s first AI/ML framework came out in 2019, and nearly 1,000 AI-enabled devices have been authorized since. That regulatory foundation is what lets companies move from research to real humans, faster.”

But none of these products have yet won mainstream adoption. Time will tell whether these companies are able to craft product experiences that are delightful enough and go-to-market strategies that are effective enough to turn these devices into mass-market successes.

Focused Ultrasound: The Next Great BCI Paradigm?

If there is one BCI technology that offers the greatest upside potential—one approach that could transcend the existing landscape of solutions (including those discussed in this article) and usher in a new paradigm for neurotechnology—it is focused ultrasound. No area within the world of brain-computer interfaces is generating more buzz and excitement today.

What exactly is focused ultrasound, and why is it so promising?

At a basic level, ultrasound is just a subcategory of sound—that is, waves that travel through particles in air and other materials. Humans can hear sound waves that fall within a certain range of frequencies. Ultrasound waves are simply sound waves with a higher frequency than humans can detect with their ears (>20 kilohertz), but that otherwise behave similarly to audible sound waves.

Ultrasound technology has been used for medical imaging for over 75 years (as anyone who has ever been pregnant or had a pregnant loved one will recall).

Focused ultrasound for the brain is a much newer innovation—one that began to take shape only in the 2010s.

The basic concept of focused ultrasound is to aim and launch many ultrasound waves in a precise sequence such that they all converge at one particular point in the brain. All the individual waves add together at that one focal point, creating enough energy density and mechanical pressure to modulate the neurons in particular ways in that one spot while leaving unaffected the rest of the brain tissue that the waves travel through. (The two simple animated graphics on this page do an excellent job of visualizing this phenomenon, making it intuitive to grasp.)

Focused ultrasound offers several unique and compelling advantages as a BCI modality.

The first is that it is orders of magnitude more precise than any other non-invasive BCI modality. EEG, fNIRS and tES all offer spatial resolution of a few centimeters. Focused ultrasound, by contrast, can target a particular spot in the brain with sub-millimeter precision. It can be thought of as a high precision beam that can be aimed at the exact location in the brain that one wants to target.

Second, focused ultrasound can reach deeper into the brain than any other non-invasive technology.

Because non-invasive sensors sit outside the skull, they generally are only able to access and interact with the outermost layer of the brain, known as the neocortex. The neocortex is the seat of advanced cognition and language, so plenty of useful applications are achievable with sensors that can only reach the neocortex. But many important regions and functions sit deeper inside the brain and are therefore out of reach for EEG, fNIRS, tES and other non-invasive sensors.

Deep brain structures like the thalamus, hypothalamus, hippocampus, basal ganglia and amygdala regulate many of our fundamental drives and functions: emotions, memory, attention, appetite, mood, movement, motivation, cravings. The ability to precisely modulate these deep brain regions could enable powerful new treatments for neuropsychiatric disorders as diverse as Parkinson’s, OCD, depression, Alzheimer’s, epilepsy, anxiety, chronic pain and PTSD—not to mention unlocking cognitive augmentation for the general population.

Up until now, access to these deeper regions could only be achieved via invasive methods that require surgery, like deep brain stimulation (DBS). All non-invasive modalities other than ultrasound—whether electrical, magnetic, optical or infrared—are attenuated by human tissue, which means they can make it only a limited distance before they dissipate. Focused ultrasound, by contrast, is a mechanical wave and as a result can pass through human tissue with very little attenuation. This enables it to travel deep into the brain while maintaining its concentrated focus.

And these possibilities are not just theoretical. Recent research has shown that focused ultrasound can, for instance, meaningfully reduce chronic pain in patients; decrease opioid cravings in participants with serious addictions; and minimize tremors for those who suffer from essential tremor—all of which involve accessing deep brain structures.

One final advantage of ultrasound that sets it apart from every other non-invasive modality: it can both read and write, and it can do both with high resolution. No other individual non-invasive modality can carry out both of these functions. EEG, fNIRS and MEG can read, but they cannot write. Transcranial electrical stimulation can write (though at lower resolution and shallower depth than focused ultrasound), but it cannot read.

The ability to both read and write unlocks the holy grail for brain-computer interfaces: closed loop functionality, whereby one unified system can read and decode ongoing neural activity, then stimulate the brain in selective and personalized ways based on what it reads, then see how the brain responds and adapt in realtime, and so on.

Compared to using one device to sense and a different one to modulate, a single device that can both read and write enables perfect alignment between sensing and stimulation, low latency, straightforward calibration, less hardware complexity, greater space efficiency, lower cost, and ultimately more scalable products.

The startup landscape for ultrasound BCI is nascent but developing at breakneck speed.

Today’s most high-profile focused ultrasound startup is Nudge, which recently announced a $100 million fundraise led by Thrive and Greenoaks.

Nudge CEO/cofounder Fred Ehrsam previously cofounded both Coinbase and Paradigm, two of the most successful organizations in the world of crypto. Nudge thus continues the lineage of billionaires launching BCI startups, following Elon Musk with Neuralink, Bryan Johnson with Kernel, and Sam Altman with Merge Labs (more on Merge below). Nudge’s other cofounder Jeremy Barenholtz previously led product and technology at Neuralink.

Nudge’s mission is to advance the state of the art in focused ultrasound across the full stack of hardware, AI and neuroscience in order to enable precise and powerful non-invasive neuromodulation. The company’s initia...

特別聲明:以上內(nèi)容(如有圖片或視頻亦包括在內(nèi))為自媒體平臺(tái)“網(wǎng)易號(hào)”用戶上傳并發(fā)布,本平臺(tái)僅提供信息存儲(chǔ)服務(wù)。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

相關(guān)推薦
熱點(diǎn)推薦
烏專家:中國“榨干”蘇聯(lián)遺產(chǎn),我們圖紙沒看懂,他們?cè)斐?.0!

烏專家:中國“榨干”蘇聯(lián)遺產(chǎn),我們圖紙沒看懂,他們?cè)斐?.0!

小莜讀史
2025-12-25 20:46:05
倪妮太豪!在北京家里過圣誕,意外曝光內(nèi)景,難怪她看不上馮紹峰

倪妮太豪!在北京家里過圣誕,意外曝光內(nèi)景,難怪她看不上馮紹峰

情感大頭說說
2025-12-25 11:03:06
曝光!湖北18家單位被點(diǎn)名

曝光!湖北18家單位被點(diǎn)名

黃河新聞網(wǎng)呂梁頻道
2025-12-26 14:17:57
劉衛(wèi)東被查前,干了兩件最不要臉的事。

劉衛(wèi)東被查前,干了兩件最不要臉的事。

南權(quán)先生
2025-12-18 16:50:39
91年,南京小伙被女友逼著在深圳買了5套房,21年后他不敢相信

91年,南京小伙被女友逼著在深圳買了5套房,21年后他不敢相信

卡西莫多的故事
2025-11-22 15:18:18
俄羅斯美女遵從父親遺言,不要房車嫁給中國男人,如今結(jié)局如何?

俄羅斯美女遵從父親遺言,不要房車嫁給中國男人,如今結(jié)局如何?

我是蘭蘭
2024-03-15 18:11:48
闞清子做夢(mèng)沒想到,心中這口惡氣竟讓紀(jì)凌塵給出了,岳云鵬沒說錯(cuò)

闞清子做夢(mèng)沒想到,心中這口惡氣竟讓紀(jì)凌塵給出了,岳云鵬沒說錯(cuò)

可樂談情感
2025-12-27 01:15:02
突發(fā)!駐尼使館發(fā)緊急提醒:中國公民切勿盲信非法婚介來尼娶妻

突發(fā)!駐尼使館發(fā)緊急提醒:中國公民切勿盲信非法婚介來尼娶妻

西昆侖Bruce
2025-12-27 01:57:20
1月開始福氣高照!這3生肖潛力爆發(fā),正財(cái)橫財(cái)齊聚,愿望成真

1月開始福氣高照!這3生肖潛力爆發(fā),正財(cái)橫財(cái)齊聚,愿望成真

毅談生肖
2025-12-26 11:36:34
這位阿姨把最普通的衣服,穿出了優(yōu)雅又有女人味的感覺

這位阿姨把最普通的衣服,穿出了優(yōu)雅又有女人味的感覺

美女穿搭分享
2025-12-25 17:02:25
朱珠一家過節(jié),富商爸爸氣質(zhì)長相勝過王昀佳,朱媽看女婿喜笑顏開

朱珠一家過節(jié),富商爸爸氣質(zhì)長相勝過王昀佳,朱媽看女婿喜笑顏開

娛圈小愚
2025-12-25 11:00:09
聶磊栽在一個(gè)女人手上,聶磊被抓,為什么大領(lǐng)導(dǎo)出面都不好使?

聶磊栽在一個(gè)女人手上,聶磊被抓,為什么大領(lǐng)導(dǎo)出面都不好使?

千年人參它會(huì)跑
2024-11-18 21:18:41
男子曬自己30歲的老婆,稱結(jié)婚9年仍看不夠,網(wǎng)友:沒跑路就是寶

男子曬自己30歲的老婆,稱結(jié)婚9年仍看不夠,網(wǎng)友:沒跑路就是寶

梅子的小情緒
2025-11-29 15:07:12
肋骨戳進(jìn)內(nèi)臟,腳趾全部被掰斷!青年身陷緬北魔窟!兩度逃跑失敗

肋骨戳進(jìn)內(nèi)臟,腳趾全部被掰斷!青年身陷緬北魔窟!兩度逃跑失敗

高三倒計(jì)時(shí)
2025-12-06 10:21:08
情況有變,中俄后院出現(xiàn)“叛徒”,公然支持日本入常,不得不防!

情況有變,中俄后院出現(xiàn)“叛徒”,公然支持日本入常,不得不防!

米師傅安裝
2025-12-27 02:16:19
重磅消息!官媒實(shí)錘!長沙這條地鐵要開了!明年年中載客!

重磅消息!官媒實(shí)錘!長沙這條地鐵要開了!明年年中載客!

星耀長沙
2025-12-26 22:48:42
倒計(jì)時(shí)最后一天!國乒教練組競(jìng)聘人滿為患,王勵(lì)勤“冷血”拒人情

倒計(jì)時(shí)最后一天!國乒教練組競(jìng)聘人滿為患,王勵(lì)勤“冷血”拒人情

王稱吃吃喝喝
2025-12-25 21:44:34
10中5轟13+2!放棄引進(jìn)控衛(wèi),美記曝火箭新動(dòng)向,烏度卡也明牌了

10中5轟13+2!放棄引進(jìn)控衛(wèi),美記曝火箭新動(dòng)向,烏度卡也明牌了

巴叔GO聊體育
2025-12-26 16:38:14
太棒了!這穿著你是一點(diǎn)都不遮掩,真是太讓人羨慕了

太棒了!這穿著你是一點(diǎn)都不遮掩,真是太讓人羨慕了

章眽八卦
2025-11-29 11:58:56
成都“美美力誠”金融城店,拍賣價(jià)從4.4億降到2.9億,仍然流拍!

成都“美美力誠”金融城店,拍賣價(jià)從4.4億降到2.9億,仍然流拍!

白淺娛樂聊
2025-12-26 10:23:59
2025-12-27 03:43:00
科學(xué)的歷程 incentive-icons
科學(xué)的歷程
吳國盛、田松主編
3086文章數(shù) 14991關(guān)注度
往期回顧 全部

科技要聞

收割3000億!拼多多"土辦法"熬死所有巨頭

頭條要聞

老人婚宴上被提醒孫女非親生 做鑒定后忍3年忍不了了

頭條要聞

老人婚宴上被提醒孫女非親生 做鑒定后忍3年忍不了了

體育要聞

開翻航母之后,他決定親手造一艘航母

娛樂要聞

王傳君生病后近照變化大,面部浮腫

財(cái)經(jīng)要聞

投資巨鱷羅杰斯最新持倉:只留四種資產(chǎn)

汽車要聞

兩大CEO試駕 華為乾崑*啟境開啟首款獵裝轎跑路測(cè)

態(tài)度原創(chuàng)

家居
旅游
房產(chǎn)
親子
軍事航空

家居要聞

格調(diào)時(shí)尚 智慧品質(zhì)居所

旅游要聞

桂林冬日必沖!紅杉映水如油畫,免費(fèi)打卡還出片

房產(chǎn)要聞

炸裂,三亞360億超級(jí)清單發(fā)布,又一批重大配套要來了!

親子要聞

為什么買好衣服給孩子是個(gè)大坑?你絕對(duì)想不到!

軍事要聞

烏最新20點(diǎn)俄烏和平草案遞交莫斯科 俄方拒絕

無障礙瀏覽 進(jìn)入關(guān)懷版