国产av一二三区|日本不卡动作网站|黄色天天久久影片|99草成人免费在线视频|AV三级片成人电影在线|成年人aV不卡免费播放|日韩无码成人一级片视频|人人看人人玩开心色AV|人妻系列在线观看|亚洲av无码一区二区三区在线播放

網(wǎng)易首頁 > 網(wǎng)易號 > 正文 申請入駐

多模態(tài)檢索新突破,用軟標(biāo)簽打破傳統(tǒng)剛性映射約束,全面超越CLIP

0
分享至

UniME-V2團(tuán)隊 投稿
量子位 | 公眾號 QbitAI

統(tǒng)一多模態(tài)嵌入模型是眾多任務(wù)的技術(shù)基石。

當(dāng)前主流方法通常采用批內(nèi)負(fù)例挖掘策略,通過計算查詢-候選對的相似度進(jìn)行訓(xùn)練。

但這類方法存在明顯局限:難以捕捉候選樣本間細(xì)微的語義差異,負(fù)例樣本多樣性不足,且模型在區(qū)分錯誤負(fù)例與困難負(fù)例時的判別能力有限。

針對這些問題,團(tuán)隊提出全新解決方案——基于多模態(tài)大模型語義理解能力的統(tǒng)一多模態(tài)嵌入模型UniME-V2。

該方法首先通過全局檢索構(gòu)建潛在困難負(fù)例集,隨后創(chuàng)新性地引入“MLLM-as-a-Judge”機制:利用MLLM對查詢-候選對進(jìn)行語義對齊評估,生成軟語義匹配分?jǐn)?shù)。

這一設(shè)計帶來三重突破:

  • 以匹配分?jǐn)?shù)為依據(jù)實現(xiàn)精準(zhǔn)困難負(fù)例挖掘,有效規(guī)避錯誤負(fù)例干擾
  • 確保篩選出的困難負(fù)例兼具多樣性與高質(zhì)量特性
  • 通過軟標(biāo)簽機制打破傳統(tǒng)一對一的剛性映射約束



通過將模型相似度矩陣與軟語義匹配分?jǐn)?shù)矩陣對齊,使模型真正學(xué)會辨析候選樣本間的語義差異,顯著提升判別能力。

為進(jìn)一步提升性能,團(tuán)隊基于挖掘的困難負(fù)例訓(xùn)練出重排序模型UniME-V2-Reranker,采用配對與列表聯(lián)合優(yōu)化策略。



圖1 UniME-V2與以往方法的本質(zhì)不同,在于巧妙利用了多模態(tài)大模型(MLLM)的深層語義理解能力。它不僅能用此能力精準(zhǔn)挖掘“困難負(fù)例”,更能生成一個軟語義匹配分?jǐn)?shù),如同一位資深導(dǎo)師,指導(dǎo)模型學(xué)會辨別候選樣本間微妙的語義差異。

方法
MLLM-as-a-Judge 困難負(fù)樣本挖掘

過去的研究主要依賴于批內(nèi)硬負(fù)樣本挖掘,其中計算查詢-候選嵌入相似性以采樣負(fù)樣本。

然而,這種方法通常受到負(fù)樣本多樣性有限和嵌入判別能力不足的困擾,難以有效區(qū)分錯誤和困難的負(fù)樣本。

為了克服這些挑戰(zhàn),如圖2所示,首先利用全局檢索構(gòu)建一個潛在的困難負(fù)樣本集。

之后,利用MLLM的強大理解能力來評估每個查詢-候選對的語義對齊性,并生成軟語義匹配分?jǐn)?shù)。

這個分?jǐn)?shù)指導(dǎo)了硬負(fù)樣本挖掘,使得能夠識別出多樣化和高質(zhì)量的困難負(fù)樣本,同時減少錯誤負(fù)樣本的影響。



圖2:基于MLLM-as-a-Judge的困難負(fù)樣本挖掘流程。我們首先利用現(xiàn)有的多模態(tài)嵌入模型進(jìn)行全局檢索,構(gòu)建一個潛在的困難負(fù)樣本集。然后,利用MLLM強大的理解能力根據(jù)語義對齊性對查詢-候選對進(jìn)行評分,從而精確識別困難負(fù)樣本。

潛在困難負(fù)樣本集合為了從全局樣本中提取更高質(zhì)量的困難負(fù)樣本,首先使用VLM2Vec為查詢和候選生成嵌入。

接著,為每個查詢檢索出50個最相關(guān)的候選。

為了應(yīng)對錯誤負(fù)樣本并增加多樣性,我們基于查詢-候選相似度分?jǐn)?shù)設(shè)定一個相似度閾值,并選擇前50名的候選作為潛在的困難負(fù)樣本集:

其中 是由VLM2Vec模型計算得出的查詢 與候選 的相似度分?jǐn)?shù)。

語義匹配分?jǐn)?shù)在構(gòu)建潛在的困難負(fù)樣本集后,我們使用MLLM作為評判,為中的每個查詢-候選對計算語義匹配分?jǐn)?shù),具體指令如下:



隨后,根據(jù)()和()標(biāo)記的logits計算語義匹配分?jǐn)?shù),其中。這里,表示查詢的數(shù)量。利用MLLMs的高級理解能力,語義匹配分?jǐn)?shù)有效地捕捉了查詢和候選之間的語義對齊程度。

困難負(fù)樣本采樣為了提高困難負(fù)樣本的質(zhì)量,利用語義匹配分?jǐn)?shù)對候選進(jìn)行精煉。

候選樣本的分?jǐn)?shù)超過閾值(其中表示正樣本,是控制閾值間隔的超參數(shù))則會當(dāng)作錯誤負(fù)樣本并排除。為保持多樣性,采用五步間隔的循環(huán)采樣策略。

如果精煉后的集合包含的候選少于十個,將重復(fù)選擇以確保至少有十個。

在極少數(shù)情況下(<1%),如果沒有候選符合條件,將從最初的五十個候選中隨機選擇10個,并給每個分配1.0的語義匹配分?jǐn)?shù)。

最后,對于每個查詢,我們獲得困難負(fù)樣本集及其相應(yīng)的語義匹配分?jǐn)?shù)。



圖3:基于MLLM判斷的訓(xùn)練框架結(jié)構(gòu)。UniME-V2使用軟語義匹配分?jǐn)?shù)作為監(jiān)督信號,以增強候選者間的語義區(qū)分學(xué)習(xí)。UniME-V2-Reranker采用pairwise和listwise聯(lián)合訓(xùn)練以提升重排序性能。

基于MLLM判斷的訓(xùn)練框架

UniME-V2為此提出了一個基于MLLM判斷的分布對齊框架,如圖3所示,利用軟語義匹配分?jǐn)?shù)作為監(jiān)督信號來提高表征性能。

具體來說,給定一個查詢及其候選集,將它們輸入到MLLM中,并提取最后一個標(biāo)記作為查詢和候選集的嵌入,其中是目標(biāo)候選的嵌入,是每個查詢的困難負(fù)樣本數(shù)。然后計算查詢嵌入與候選嵌入之間的關(guān)系得分矩陣如下:

基于語義匹配分?jǐn)?shù),計算由MLLM判斷得出的語義匹配分?jǐn)?shù)矩陣如下:

為了增強學(xué)習(xí)的穩(wěn)健性并確保矩陣對稱性,采用了JS-Divergence,這是KL-Divergence的一種對稱替代。最終的損失函數(shù)定義為:

除此之外,受前人工作啟發(fā),UniME-V2聯(lián)合pairwise和listwise訓(xùn)練了一個重排序模型UniME-V2-Reranker(如圖3所示)來提高基于初始嵌入的檢索精度。

在成對訓(xùn)練中,為每個查詢構(gòu)造兩對,一對與正候選結(jié)合,另一對與最困難的負(fù)候選結(jié)合。然后指導(dǎo)UniME-V2-Reranker對正候選輸出,對負(fù)候選輸出。成對損失使用交叉熵?fù)p失函數(shù)計算如下:

其中表示UniME-V2-Reranker的自回歸輸出過程。對于列表訓(xùn)練,基于語義匹配分?jǐn)?shù),從困難負(fù)候選中選擇前個候選,隨機插入目標(biāo)候選并獲取其索引。

然后提示UniME-V2-Reranker輸出真實位置,公式為:

最終的損失函數(shù)定義為。



表1:MMEB基準(zhǔn)測試結(jié)果。IND表示在分布內(nèi),OOD表示在分布外。分?jǐn)?shù)為補充材料中的平均精度結(jié)果。

實驗
多模態(tài)檢索

表1展示了在相同訓(xùn)練數(shù)據(jù)和配置下UniME-V2與現(xiàn)有基線模型在MMEB基準(zhǔn)上的性能對比。

UniME-V2在各種基礎(chǔ)模型上均有顯著的性能提升。

具體來說,UniME-V2在Qwen2-VL-2B和7B模型上分別比VLM2Vec高出3.5%和2.2%。

當(dāng)基于LLaVA-OneVision作為基礎(chǔ)時,UniME-V2比包括QQMM、LLaVE和UniME在內(nèi)的之前的最先進(jìn)模型提高了0.5%-0.9%。此外,UniME-V2在分布外數(shù)據(jù)集上的得分為66.7,凸顯其魯棒性和卓越的遷移能力。



表2:在短描述(Flickr30K, MS-COCO)、長描述(ShareGPT4V, Urban1K)和組合(SugarCrepe)數(shù)據(jù)集上的零樣本文本-圖像檢索結(jié)果。

跨模態(tài)檢索

如表2所示,在零樣本跨模態(tài)檢索任務(wù)上評估UniME-V2。對于短描述數(shù)據(jù)集,包括Flickr30K和MS-COCO,UniME-V2在圖像到文本檢索中比UniME表現(xiàn)出了2.2%-9.7%的性能提升。

在文本到圖像檢索中,其性能與UniME相當(dāng),這主要歸因于兩個因素:

(1)MMEB訓(xùn)練集中文本到圖像數(shù)據(jù)的比例有限;

(2)短描述中的語義信息不足。

對于長描述跨模態(tài)檢索任務(wù),UniME-V2在ShareGPT4V和Urban1K上取得了顯著改進(jìn),這得益于其增強的區(qū)分能力和詳細(xì)描述提供的豐富語義內(nèi)容。

值得注意的是,與EVA-CLIP-8B相比,UniME-V2展示了更為穩(wěn)健的檢索性能,這主要因為其通用多模態(tài)嵌入能顯著減少模態(tài)間的差距(如圖4所示)。



圖4:EVA-CLIP-8B與UniME-V2(LLaVA-OneVision-7B)之間的表示分布對比。

組合跨模態(tài)檢索

基于SugarCrepe評估UniME-V2模型區(qū)分困難負(fù)樣本的能力。

如表2所示,UniME-V2在所有評估指標(biāo)上均表現(xiàn)出卓越性能。

與UniME相比在使用Qwen2-VL-2B時性能提升了5.3%,6.0%,4.5%。當(dāng)模型從2B擴展到7B后也實現(xiàn)了9.0%,9.2%,9.2%的性能提升。

此外,與EVA-CLIP-8B相比,UniME-V2還顯示出2.7%,3.4%,和3.8%的改進(jìn),凸顯其在區(qū)分困難負(fù)樣本上的強大能力。



表3:使用UniME-V2 (Qwen2-VL-7B) 和 UniME-V2 (Qwen2-VL-2B) 比較LamRA與UniME-V2-Reranker的重排序性能。

重排序?qū)Ρ?/h5>

在表3中基于top5檢索結(jié)果對比了LamRA與UniME-V2-Reranker的性能。為確保公平,使用與LamRA相同的訓(xùn)練參數(shù)和基礎(chǔ)模型(Qwen2.5-VL-7B)。

當(dāng)使用LamRA和UniME-V2-Reranker對UniME-V2 (Qwen2-VL-2B) 檢索結(jié)果進(jìn)行重排后在四個下游任務(wù)上均提升了性能。

UniME-V2-Reranker在只使用一半數(shù)據(jù)的情況下始終獲得更優(yōu)結(jié)果。類似地,使用UniME-V2 (Qwen2-VL-7B) 進(jìn)行檢索時,UniME-V2-Reranker的表現(xiàn)也超過了LamRA,在四個任務(wù)中分別獲得了0.5%,0.4%,0.3%,和7.4%的性能提升。

值得注意的是,UniME-V2-Reranker在組合理解檢索任務(wù)中展示了對LamRA的顯著優(yōu)勢,這歸功于其利用MLLM的理解能力提取多樣化和高質(zhì)量的困難樣本,有效增強了模型的區(qū)分能力。

論文:

https://arxiv.org/abs/2510.13515

GitHub:

https://github.com/GaryGuTC/UniME-v2

特別聲明:以上內(nèi)容(如有圖片或視頻亦包括在內(nèi))為自媒體平臺“網(wǎng)易號”用戶上傳并發(fā)布,本平臺僅提供信息存儲服務(wù)。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

相關(guān)推薦
熱點推薦
吃相太難看!史曉燕炮轟何晴,離婚咎由自取,難怪許亞軍缺席葬禮

吃相太難看!史曉燕炮轟何晴,離婚咎由自取,難怪許亞軍缺席葬禮

阿纂看事
2025-12-19 11:17:36
中方話音剛落,泰國松口?;?,給柬埔寨列了3個條件,下手非常狠

中方話音剛落,泰國松口?;?,給柬埔寨列了3個條件,下手非常狠

小祁談歷史
2025-12-20 02:49:31
泰國空襲柬埔寨,沖突事件再升級!約80萬人被迫離開家園

泰國空襲柬埔寨,沖突事件再升級!約80萬人被迫離開家園

7號觀察室
2025-12-20 01:50:43
方永飛懟雷軍,“行業(yè)不敢說的話全被他講透了”

方永飛懟雷軍,“行業(yè)不敢說的話全被他講透了”

車轱轆話V
2025-12-19 19:04:42
海南封關(guān)首日太瘋狂!1.5噸馬來西亞榴蓮1小時搶空,價格直降一半

海南封關(guān)首日太瘋狂!1.5噸馬來西亞榴蓮1小時搶空,價格直降一半

娛樂的硬糖吖
2025-12-19 04:21:18
與王昶同框畫面曝光,錢天一徹底掉出國家隊名單!

與王昶同框畫面曝光,錢天一徹底掉出國家隊名單!

最愛乒乓球
2025-12-20 00:05:04
沒想到泰柬邊境打得正兇呢,柬首相洪瑪奈卻在國際上鬧了個大笑話

沒想到泰柬邊境打得正兇呢,柬首相洪瑪奈卻在國際上鬧了個大笑話

安安說
2025-12-18 10:01:34
中方通告泰柬,第三國或卷入沖突,洪森準(zhǔn)備B計劃,柬軍丟盔卸甲

中方通告泰柬,第三國或卷入沖突,洪森準(zhǔn)備B計劃,柬軍丟盔卸甲

小曙說娛
2025-12-20 02:53:24
島內(nèi)民調(diào)曝光,原來這才是賴清德叫囂大陸底氣,朱立倫露出真面目

島內(nèi)民調(diào)曝光,原來這才是賴清德叫囂大陸底氣,朱立倫露出真面目

真的好愛你
2025-12-20 03:55:27
我退休后回老家養(yǎng)老,村書記擺架子要給我上一課,不料縣長來考察

我退休后回老家養(yǎng)老,村書記擺架子要給我上一課,不料縣長來考察

五元講堂
2025-12-04 11:49:42
湘潭一村民組開會決議將“外嫁女”所得法院執(zhí)行款項從其親屬頭上扣除,村支書:對決議不知情,未簽字批準(zhǔn)

湘潭一村民組開會決議將“外嫁女”所得法院執(zhí)行款項從其親屬頭上扣除,村支書:對決議不知情,未簽字批準(zhǔn)

紅星新聞
2025-12-20 00:33:11
40歲大哥早年花120萬投股票,時隔10年如今急用錢,他記起這件事

40歲大哥早年花120萬投股票,時隔10年如今急用錢,他記起這件事

卡西莫多的故事
2025-12-15 10:30:03
中超著名經(jīng)理人獲刑:卷入李鐵案,多次逃過調(diào)查,如今被判5年

中超著名經(jīng)理人獲刑:卷入李鐵案,多次逃過調(diào)查,如今被判5年

國足風(fēng)云
2025-12-19 14:12:17
0分!2分!還要年薪300萬?廣東揪出最大軟蛋,杜鋒自作自受

0分!2分!還要年薪300萬?廣東揪出最大軟蛋,杜鋒自作自受

多特體育說
2025-12-20 00:03:22
官宣!中國男籃核心遭重傷!打日本隊需大換血,郭士強或帶2小將

官宣!中國男籃核心遭重傷!打日本隊需大換血,郭士強或帶2小將

老吳說體育
2025-12-19 22:50:11
泰軍再次炮擊柬埔寨園區(qū),電詐分子出逃,長長隊伍一眼望不到頭

泰軍再次炮擊柬埔寨園區(qū),電詐分子出逃,長長隊伍一眼望不到頭

環(huán)球熱點快評
2025-12-18 07:59:22
調(diào)停失敗,泰軍要把柬埔寨徹底打殘,中方只好照例送泰柬兩句話

調(diào)停失敗,泰軍要把柬埔寨徹底打殘,中方只好照例送泰柬兩句話

我心縱橫天地間
2025-12-16 12:51:12
明天18時起!廣州全市暫停辦理!

明天18時起!廣州全市暫停辦理!

羊城攻略
2025-12-19 16:56:39
《阿凡達(dá) 3》電影院選廳指南:別再無腦選 IMAX 了(附影院名單)

《阿凡達(dá) 3》電影院選廳指南:別再無腦選 IMAX 了(附影院名單)

愛范兒
2025-12-19 18:21:11
海南封關(guān),新加坡坐不住了

海南封關(guān),新加坡坐不住了

智谷趨勢
2025-12-19 14:12:25
2025-12-20 05:08:49
量子位 incentive-icons
量子位
追蹤人工智能動態(tài)
11884文章數(shù) 176340關(guān)注度
往期回顧 全部

科技要聞

許四清:具身智能的"ChatGPT時刻"還未到來

頭條要聞

普京:俄方愿在烏克蘭選舉期間暫時停止打擊

頭條要聞

普京:俄方愿在烏克蘭選舉期間暫時停止打擊

體育要聞

“惡龍”埃托奧,正在毀滅喀麥隆足球

娛樂要聞

曲協(xié)表態(tài)僅6天,郭德綱擔(dān)心的事還是發(fā)生

財經(jīng)要聞

日元加息,恐慌來了?貨幣三國殺

汽車要聞

“一體壓鑄”再引熱議 一旦受損真的修不起嗎?

態(tài)度原創(chuàng)

本地
房產(chǎn)
家居
教育
軍事航空

本地新聞

云游安徽|訪黃山云海古村,讀一城山水風(fēng)骨

房產(chǎn)要聞

廣州有態(tài)度,一座國際化社區(qū)給出的城市答案

家居要聞

高端私宅 理想隱居圣地

教育要聞

北京化工大學(xué)考場安排!別慌,1分鐘說清

軍事要聞

媒體:美方官宣史上對臺單筆最大軍售 野心藏不住了

無障礙瀏覽 進(jìn)入關(guān)懷版